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Abstract

As large language models (LLMs) are evolving at a rapid pace, the design space
for building high-performance and efficient models has expanded significantly.
This position paper argues that the next level of LLMs will combine decoder-
only architectures with modular enhancements in perception and specialization,
supported by adaptive post-training and hardware-aware optimization strategies.
We analyze 31 influential LLMs developed by 12 leading institutions, examining
their design choices across three critical dimensions: model architecture, post-
training, and optimization. By asking and answering 9 fundamental research
questions surrounding these design choices, we identify key trends and propose
forward-looking directions to guide the design of next-generation LLMs that are
more capable, efficient, and adaptable to diverse real-world needs. To support the
community, we maintain a GitHub repository that will be continuously updated at
https://github.com/meettyj/LLMs-Design-Choices.

1 Introduction

Large Language Models (LLMs) have rapidly evolved across academia, industry, and public life [83,
84, 15, 118]. As models proliferate, the design space for building high-performance, generalizable,
and efficient LLMs has expanded dramatically. In this paper, we analyze 31 of the most influential
LLMs to date from 12 institutes1, examining their design choices on model architecture, post-training,
and optimization. From this analysis, we identify key patterns, tradeoffs, and emerging paradigms
that we believe will shape the next generation of LLMs.

On the design choices of Model Architecture, we focus on answering two research questions: 1
What makes decoder-only architectures dominant? and 2 When to use dense or MoE architectures?
We conclude that decoder-only architectures dominate for their task unification, scalability, inference
efficiency, and alignment to pre-training. In addition, dense and MoE model architectures reflect
different strengths, where dense models support stable training and easy deployment, and MoE
enables efficient scaling and expert specialization. Our position is that next level of LLMs will retain
decoder-only cores for general capabilities while incorporating encoder-style components for
perception, and various expert modules for scalability and specialization.

On the design choices of Post-training, we focus on answering three research questions: 1 How
to select task and data for post-training? 2 How to choose post-training strategy? and 3 How to
obtain reward for reinforcement learning? We conclude that the modern LLMs are trained on varied

1The included 31 models ranked by institute name: AI2 (OLMo 2 [85], Tülu 3 [61]), Alibaba (Qwen2
[136], Qwen2.5 [137], Qwen2.5-1M [138], QwQ-32B [92], Qwen3 [135]), Anthropic (Aya 23 [9], Claude 3
[7], Claude 4 [8]), Apple (OpenELM [81], DCLM [65]), DeepSeek (DeepSeek-V3 [73], DeepSeek-R1 [36]),
Google (Gemini 1.0 [106], Gemini 1.5 [107], Gemini 2.0 [32], Gemini 2.5 [33], Gemma 1 [108], Gemma 2 [29],
Gemma 3 [28]), Meta (Llama 3 [35], Llama 4 [82]), Microsoft (Phi-3 [1], Phi-4 [2], Phi-4-Mini [3]), Mistral
AI (Mistral 7B [52], Mixtral 8x7B [53]), Moonshot AI (Kimi K1.5 [109]), OpenAI (GPT-4 [4]), Zhipu AI
(ChatGLM series [30]).
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data types and refined through post-training that involves diverse strategies, including reinforcement
learning and increasing use of synthetic data. Reward signals used in this process can come from
human preferences, rule-based verification, or AI-generated feedback. Our position is that next level
of LLMs will emphasize data-centric learning, adaptive post-training pipelines, and dynamic
reward modeling that integrates human and AI feedback to tailor models to specific tasks and
different user needs.

On the design choices of Optimization, we focus on answering four research questions: 1 How to
design prompt template? 2 How to minimize memory usage? 3 How to obtain a smaller model?
and 4 How to accelerate training and inference? We conclude that effective and efficient LLM
development relies on well-crafted prompt design, memory-efficient techniques, advanced capability
distillation, parallelism strategies, and hardware-aware optimizations. Our position is that next level
of LLM will unify prompt design, optimize memory and compute through hardware-algorithm
co-design, and evolve into a layered ecosystem of super-teacher and specialized student models
for greater efficiency, generalization, and customization.

2 Design Choices on Model Architecture

2.1 What Makes Decoder-only Architectures Dominant?

Takeaway: Decoder-only models dominate LLM design because of their ability that unifying
tasks through next-token prediction, simplifying architecture for scalability, enabling efficient
streaming inference, and aligning naturally with raw-text pre-training.
Position: The next leap may come from modular extensions on top of decoder-only models,
such as multimodal encoders for perception, simulators or search interfaces for interaction,
and encoder-style modules for memory and personalization.

Decoder-only architectures have become the dominant and default choice for building LLMs nowa-
days, effectively replacing encoder-decoder and encoder-only designs. This transition is driven by
four core advantages: 1 Decoder-only architectures unify diverse NLP tasks such as summarization
and translation under a single next-token prediction training objective. With proper instruction
tuning, LLMs can generalize across tasks without training task-specific heads, as demonstrated in
Llama 3, Claude 3, and QwQ-32B. 2 Decoder-only architectures are simple and highly scalable.
Removing encoders and cross-attentions simplifies implementation and eliminates coordination
overhead, enabling efficient scaling to hundreds of billions of parameters in models like Llama 4,
Command A, and DeepSeek-R1&V3. 3 Decoder-only architectures enable efficient inference via
streaming-style generation, producing outputs token by token without re-encoding input. This makes
them well-suited for latency-sensitive deployment tasks. Several models leverage this advantage, in-
cluding Phi-4, Kimi K1.5, and Qwen2.5. 4 The autoregressive nature of decoder-only architectures
aligns naturally with pre-training on vast amounts of unstructured web text, eliminating the need for
obtaining input-output pairs. This compatibility has enabled highly scalable pre-training approaches
in Gemini 1.5, Gemma 3, and OLMo 2. In contrast, encoder-decoder models [94, 134, 63, 105] rely
on input-output pairs and increasingly limited to alignment-heavy tasks, many of which can be refor-
mulated for decoder-only models via prompting. In addition, encoder-only models [23, 75, 62, 40]
are not inherently suited for open-ended generation and are used mainly for discriminative tasks
such as classification, retrieval, and reranking. These factors explain the dominance of decoder-only
architectures in modern LLMs, and increasingly drive the development of modular components to
enhance grounding, reasoning, and personalization [152, 78, 150].

2.2 When to Use Dense or MoE Architectures?

Takeaway: Dense models offer strengths such as training stability and ease of deployment,
while MoE enable efficient scaling, expert specialization, and resource-aware execution.
Position: Future LLMs can adopt hybrid architectures that integrate a dense core for stable
general-purpose capabilities with different expert modules for scalability and specialization.

Dense Architectures. Dense models activate all parameters at every step, resulting in a uniform
execution pattern that simplifies both training and deployment. 1 Dense architectures typically
exhibit more stable convergence, as every parameter is updated in each optimization step. This
consistency avoids routing-related instability in MoE training, and underpins the reliability of

2



production-scale systems such as Llama 3, Gemma 3, and Claude 3. 2 Dense architectures’
simplicity also facilitates deployment, as dense models do not require dynamic routing or expert-
specific memory layouts. GPT-4 adopts dense backbones due to their stable inference behavior and
alignment with existing deployment environments. In addition, Long-context systems like Command
A and Qwen2.5-1M demonstrate that up to 256K or 1M token sequences can be processed efficiently.
These advantages make dense architectures a reliable foundation [91, 72, 125].

Mixture-of-Experts (MoE) Architectures. MoE architectures increase capacity by routing each token
to a small subset of experts. 1 MoE enables parameter scaling without linear growth in compute.
Models like Phi-3.5-MoE, and DeepSeek-R1 reach massive scale while keeping inference tractable,
aided by techniques such as top-k routing and attention compression. 2 MoE supports expert
specialization, where different subnetworks learn to handle distinct tasks or domains. Mechanisms
like SparseMixer (Phi-3.5-MoE), expert segmentation (Qwen2.5-MoE), global-batch load balancing
(Qwen3-30B-A3B & Qwen3-235B-A22B), and auxiliary-loss-free load balancing (DeepSeek-V3)
enhance expert diversity and utilization, making MoE promising for multitask and domain-adaptive
learning. 3 MoE also reduces FLOPs and runtime cost by activating only a small subset of experts
per token, enabling more efficient inference than dense models with similar total parameter count.
This makes them appealing for compute-efficient settings, as seen in Llama 4 and Gemini 1.5 Pro,
which handle long sequences and multimodal inputs with high efficiency. Building on these strengths,
MoE provides a scalable and specialized design pattern, enabling hybrid architectures that combine
dense and MoE components for optimal generalization and specialization [31, 55, 122].

3 Design Choices on Post-Training

3.1 How to Select Task and Data for Post-training?

Takeaway: Pretrained LLMs are unlocked to a wide range of tasks during post-training,
including reasoning, modeling human preferences, tool use, and multi-modality.
Position: Beyond scaling model size and pre-training data, future LLMs will increasingly
emphasize task-specific data-centric post-training. This approach aims to equip models with
more complex behaviors that are often rare or underrepresented in the pre-training corpus.

Post-training empowers models with critical real-world abilities that are typically absent from pre-
training using diverse types of tasks and data.

Reasoning Task and Data. Enhancing LLM reasoning relies on datasets centered on structured step-
by-step problem solving. Most models incorporate chain-of-thought (CoT) data. Llama 3 and Llama
4 utilize instruction data with step-by-step solutions. Qwen2 & 2.5 integrate filtered CoT and math
solutions, coding tasks, and logical reasoning questions. QwQ-32B emphasizes complex multi-step
problems with verified CoT trajectories, solver-checked math, and execution-tested code. Qwen3
adds a long CoT cold-start stage using diverse synthetic multi-step reasoning data from expert models
like Qwen2.5-72B and QwQ-32B. DeepSeek R1&V3 use curated filtered reasoning prompts to
generate around 600K high-quality step-by-step reasoning traces across math, coding, and logic tasks
using filtered prompts. Phi-4 curates CoT data from synthetic and filtered public sources. Gemma
2&3 are fine-tuned on supervised CoT datasets. OLMo 2 and Tülu 3 include CoT demonstrations,
math solutions, and logic puzzles, including new logical reasoning queries with step-by-step answers.
Claude 4 adopts a hybrid reasoning architecture and supports an extended thinking mode for more
thorough problem solving. It utilizes advanced data cleaning, deduplication, and the collection of
high-quality data, such as through trusted crowdsourcing platforms. This trend underscores a shift
toward data-centric post-training, where carefully curated reasoning datasets play a pivotal role in
instilling capabilities that general pre-training alone cannot achieve [119, 27, 132].

Alignment Task and Human Preference Data. Aligning LLMs with human preferences for helpful-
ness and safety relies on carefully constructed preference datasets, typically comprising preference
pairs. 1 Most contemporary LLMs use human feedback, including comparisons or ratings of model
outputs, to train reward models or guide fine-tuning. In addition to human annotation, synthetic
preference data is often generated using larger models (e.g., GPT-4), as in the UltraFeedback [18]
pipeline for OLMo 2 and Tülu 3. 2 Safety alignment involves datasets targeting harmful content,
sometimes derived from manual red-teaming [89] or evaluation across specific harm categories
(e.g., Llama 3, DeepSeek V3/R1, Phi-3, Gemini 2.0, GPT-4, Claude 4). High-quality human
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preference data enables LLMs to internalize nuanced human values and safety expectations that are
underrepresented in pre-training corpora [22, 58, 14].

Agentic Task and Tool-use Data. Integrating tool-use capabilities into LLMs requires specialized
datasets that teach models to identify tool-use opportunities, format calls, and interpret results. These
datasets often include structured API-call demonstrations, code execution feedback, and simulated
agentic dialogues. Llama 4, Gemini 2.0, and Gemma 2 and 3 are fine-tuned on structured API-
call demonstrations. Qwen2 and 2.5 incorporate data featuring interactions with tools and APIs,
execution-informed coding data, and tool-driven dialogue tasks. QwQ-32B also incorporates agent-
tool interaction and execution-based coding tasks with environmental feedback. Training models on
agentic and tool-use data enables the model to orchestrate complex, multi-step workflows to solve
problems beyond the scope of pure language understanding [102, 101, 140].

Multimodal Understanding Task and Data. The development of multimodal capabilities in language
models is achieved through training on datasets that integrate information across different modalities,
primarily text and vision, but also extending to audio and video. Most multimodal LLMs, including
Llama 4, Gemini 2.0, and Gemma 3, were fine-tuned on diverse data types such as text, images,
video, and audio to enable the model to perceive, reason over, and generate outputs grounded in
multiple modalities. This integration of cross-modal data during post-training exemplifies the data-
centric approach needed to equip LLMs with perceptual and contextual understanding beyond what
is possible with text-only pre-training [39, 148, 10].

3.2 How to Choose Post-training Strategy?

Takeaway: Post-training incorporates multiple training strategies and reinforcement learning
algorithms, with growing reliance on rejection sampling to enhance capabilities.
Position: The future of post-training lies in developing multiple stages that iteratively use
diverse strategies, adapting LLMs’ behaviors to real-world environments and needs.

Post-Training Strategies. Post-training plays a critical role in aligning LLMs with human preferences
and task demands. 1 Supervised fine-tuning (SFT) constitutes a foundational step in most LLM
post-training pipelines, enabling models to acquire instruction-following capabilities and align with
user intent. Models such as GPT-4, Gemini 1.0, Gemini 1.5, and Claude 3 primarily adopt SFT to
instill basic instruction adherence. Others, including Llama 4, Qwen3, Kimi k1.5, Phi-4, OpenELM,
and DCLM 7B, apply extended or multi-phase SFT procedures to support broader task coverage
and enhanced generalization. 2 Multi-stage pipelines incorporating reinforcement learning (RL)
are increasingly adopted to refine alignment and performance. DeepSeek-R1 exemplifies this trend
with multi-phase pipelines combining SFT and RL. Qwen2.5 integrates offline DPO [93] and online
GRPO [100], while Qwen3 executes iterative cycles of SFT and RL. Llama 4 combines lightweight
SFT with continuous online RL and lightweight DPO. Kimi k1.5 follows a sequence of vanilla SFT,
Long-CoT SFT, and RL. Claude 3 employs Constitutional AI, which combines supervised learning
with RL from AI-generated feedback. Phi-3, Phi-4, and OpenELM adopt both SFT and DPO.
Gemma 3 combines distillation with reinforcement objectives with various techniques [99, 96]. 3
Model merging is another complementary technique that aggregates knowledge across checkpoints.
Command A constructs “SFT Soup” and “RL Soup” by averaging expert models trained on domain-
specific data. Gemma 2 and OLMo 2 perform checkpoint averaging across SFT and RL stages.
These post-training strategies together form a robust framework for aligning LLMs with human intent
and advancing their overall capabilities [59, 141, 116].

Reinforcement Learning Algorithms. Reinforcement learning is a core component of post-training,
enabling models to align more effectively with human intent, safety preferences, and task-specific
demands. 1 PPO [98] is a widely used on-policy method adopted by GPT-4, Llama 3, Gemini 1.0,
Tülu 3, OLMo 2, and ChatGLM series. 2 DPO, a scalable off-policy alternative, is employed by
Llama 3, Llama 4 (lightweight tuning), Qwen2 (offline and online), Qwen2.5 (offline), Phi-3 and
Phi-4 (with Pivotal Token Search and judge-guided reward), as well as OpenELM, Tülu 3, OLMo 2,
and the ChatGLM series. 3 GRPO enhances reasoning via group-based advantage estimation, and
is used in DeepSeek-V2, DeepSeek-R1, DeepSeek-V3, Qwen2.5 (online RL), Qwen3 (reasoning
RL), Tülu 3.1, and OLMo 2 32B for RLVR. Gemma 1 adopts an RL algorithm with an LM-based
rater. 4 Online Policy Mirror Descent optimizes expected returns under policy regularization toward
a reference model [112]. Kimi k1.5 applies this method with a CoT Reward Model, excluding a value
network to improve training efficiency and exploration. 5 Other approaches include Command A’s
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Self-improving Robust Preference Optimization for continual alignment, and the Claude 3 series
optimizes PPO using AI-generated feedback and aligns the model to a predefined constitution. A
common pattern is the use of an SFT-based reference model with KL regularization to balance
alignment and generalization. DCLM 7B is a notable exception, omitting RL entirely after SFT.
Collectively, these diverse RL algorithms underscore a clear trend toward fine-grained control in
enhancing capabilities and aligning models with human needs [117, 47, 44].

Iterative Training with Rejection Sampling. Rejection sampling is pivotal for enhancing LLM perfor-
mance, often serving as a strong alternative to RL for refining problem-solving behaviors and overall
response quality. 1 Rejection sampling has been employed for data quality assurance and model
refinement. For instance, Llama 3 utilizes rejection sampling to choose optimal responses, while
Qwen2 applies it for tasks with definitive answers like math, by generating multiple reasoning paths
and preserving those leading to accurate conclusions, a process that also aids in creating preference
data. Expanding on this, Qwen2.5 employs execution feedback-based rejection sampling to filter
SFT data for instruction-following, ensuring only high-quality and verified data demonstrating faith-
ful instruction adherence is selected. Qwen3 further uses this method to generate “thinking” SFT
data from earlier stage queries using a later stage model to maintain performance. DeepSeek-V3
implements rejection sampling after RL training to curate high-quality SFT data using expert models
as sources, and DeepSeek-R1 generates reasoning trajectories by performing rejection sampling
from RL checkpoints. Similarly, OpenELM uses statistical rejection sampling on the UltraFeedback
dataset [19]. 2 LLM-powered evaluation and AI judges play a crucial role in more data filtration
processes of rejection sampling. Llama 4 employs AI judges for data filtration, removing more than
50% data for lightweight SFT and RL. Kimi k1.5 integrates LLMs directly into its rejection sampling
process, particularly by compressing its long CoT reasoning into shorter forms. By orchestrating
successive stages of rejection sampling alongside complementary tuning methods, post-training
pipelines can dynamically refine LLM behaviors to meet diverse real-world demands [88, 129, 130].

3.3 How to Obtain Reward for RL?

Takeaway: Reward signal used for reinforcement learning can be obtained from a diverse
sources, including human preference, rule-based verifications, and AI-generated feedback.
Position: The frontier of LLM reward modeling lies in integrating human and AI feedback
with automated and verifiable evaluations. Future models should pioneer dynamic, self-
improving reward modeling that adapt to new tasks based on user needs and AI capabilities.

Human Preference Reward. Human preference data remains central to reward modeling in LLMs,
with leading models adopting various strategies. 1 Many models train reward models on human-
annotated preference data. Specifically, GPT-4 trains its reward model using human-ranked responses
to predict annotator preferences. Llama 3 enhances this paradigm by incorporating four graded
preference levels for the annotations. Gemini 1.0 integrates multi-dimensional human evaluations,
while Gemini 1.5 combines RLHF with continuous safety monitoring. ChatGLM integrates RL
from human feedback and presents ChatGLM-RLHF to improve safety, multilingual coherence, and
response acceptance in multi-turn settings. In contrast, Gemma 2 narrows its focus to English-only
human preference data to specialize in conversational competence. 2 Beyond simple human ranking,
some models implement refined reward learning strategies to combat overfitting. Command A
adopts a two-stage Bradley-Terry-based method, first training on large-scale low-quality preference
data, then refining with high-quality data based on strong human preferences. 3 Several models
explore hybrid pipeline with offline and online learning to improve hard-to-measure capabilities.
Qwen2 and Qwen2.5 combine offline and online learning to improve reasoning and factual accuracy,
using pre-compiled preference datasets and RL. Specifically, Qwen 2.5 targets offline training toward
reward-intractable skills such as instruction-following. These evolving methodologies demonstrate
the effectiveness of human preference data and highlight a growing need for advanced reward
modeling methods that move beyond simply using human feedback [67, 54, 154].

Rule-based Rewards. A growing class of LLMs adopts rule-based and verifiable rewards to directly
optimize for tasks with measurable correctness. 1 Rule-base rewards offer strong supervision in
structured domains such as math and coding by enforcing factual and logical consistency. Kimi
k1.5 and Command A use code execution and unit tests as reward signals. OLMo2 introduces RL
with Verifiable Rewards (RLVR), rewarding only benchmark-correct solutions. Tülu 3 employs a
binary verifier and observes that initializing RLVR’s value function using a general reward model
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leads to improved performance. DeepSeek-R1 uses accuracy and format-based rewards to ensure
output correctness. Phi-3 and Phi-4-Mini label correct outputs as preferred, and incorrect ones as dis-
preferred to create the rewards. 2 Models trained with diverse sources of reward signals can further
enhance their general capabilities. Gemma 3 combines rewards from human feedback, executable
feedback, and ground-truth labels, maximizing coverage of both creative and verifiable domains.
Qwen3 integrates rule-based correctness, model-based rewards with and without reference answers.
DeepSeek-V3 applies rule-based rewards for deterministic tasks and model-based preference rewards
for subjective tasks. QwQ-32B follows a staged RL process, starting with rule-based rewards (e.g.,
accuracy checkers and code test), and transitioning to general RL using reward models and verifiers.
Together, these models showcase a maturing reward modeling strategy in which diverse rewards are
important in achieving alignment and driving performance improvement [87, 127, 113, 104].

AI-based Reward Signal. RL from AI Feedback (RLAIF) presents an alternative to RLHF by utilizing
powerful LLMs to generate preference labels. 1 Several LLMs combine human annotations with
AI-generated feedback for efficient preference modeling. Claude 3 series employs the reward model
trained on both human and AI-generated preference data to support subsequent RLAIF fine-tuning.
Similarly, Qwen2 and Qwen2.5 adopt RLAIF and curate preference pairs using both human and
automated review. 2 Advanced models like GPT-4o are increasingly used as automatic judges
to reduce reliance on human raters. Phi-4 uses GPT-4o to label preference pairs, while Tülu 3
and OLMo 2 prompt GPT-4o to rate completions based on helpfulness, truthfulness, honesty, and
instruction-following, yielding rich feedback signals. 3 AI-based reward has been adopted for
multi-stage RL training. Llama 3 and Llama 4 select top candidates via reward models or the model
itself to conduct multi-round RL with rejection sampling, without external human labeling. Claude 4
uses RL for prompt injection resistance. These diverse reward modeling strategies highlight a growing
shift toward more autonomous and scalable reward generation systems that can accommodate both
user needs and AI capabilities [121, 46, 110].

4 Design Choices on Optimization

4.1 How to Design Prompt Template?

Takeaway: Prompt design plays a critical role in LLM training and inference, spanning
system prompting, standard prompting, and reasoning prompting.
Position: Unifying and systematizing prompt design, across role formatting, and reasoning
scaffolds, is critical for advancing LLM reliability and generalization.

System Prompting. System prompts initialize the behavior of LLMs for user interactions. Currently,
Grok, Claude 3, Claude 4, ChatGPT series, Gemini series employ long, manually curated sys-
tem prompts that define tool usage, search strategies, content generation rules, and even specific
behavioral fixes for known LLM quirks [156, 124]. Released or leaked examples reveal details
such as API interaction protocols, verbosity controls (e.g., OpenAI o3/o4-mini API’s “Yap score”),
multi-tool integration (e.g., OpenAI o4-mini with generation and automations), and safety policies
(e.g., ChatGPT-4o multimodal safety). This highlights the need for standardizing system prompting
practices as a foundation for more reliable and generalizable LLM behavior [17, 149].

Standard Prompting. Many mainstream LLMs use structured prompt templates to define
conversational roles and guide dialogue flow. For example, Qwen series follows
the structure with <|im_start|> and <|im_end|> tags. Llama family uses tokens
<|start_header_id|>role<|end_header_id|> to indicate roles and wraps prompts with
<|begin_of_text|> and <|end_of_text|>. DeepSeek-V3 adopts similar special tokens. Phi-
3 adopts a minimal structure with tags like <|system|>, <|user|>, <|assistant|>, and <|end|>.
In contrast, Gemini 2.0 emphasizes natural language task formulation and persona cues, rather
than relying on explicit token-based role tags. GPT-4 uses JSON-style messages (system, user,
assistant) but also handles natural language prompts well. This diversity in prompt structuring
highlights the need for a unified framework to systematically design and evaluate prompting strategies
for reliable LLM behavior [38, 80, 13].

Reasoning Prompting. Reasoning prompt enables LLMs to generate thinking process and solve
complex problems. Qwen3 and Qwen2.5-math supports structured reasoning prompts. QwQ-
32B introduces <think> tokens to externalize the intermediate reasoning steps, supporting “reason
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step by step” prompt and box the final answer \boxed{} to enhance clarity. DeepSeek-R1 omits
system messages and instead uses <think> and <answer> tags. Effective prompts for DeepSeek-R1
explicitly request stepwise reasoning, self-reflection, and comparison of solution paths, along with
clear output format instructions. Gemini 2.0 and 2.5 are designed to output internal reasoning and
respond well to prompts encouraging sequential explanations. GPT-4 and Claude 3 also excel in
complex reasoning tasks and benefit from CoT prompts like “Let’s think this through step by step”.
Ultimately, unifying role formatting and structured reasoning scaffolds into a cohesive prompting
framework empowers LLMs to decompose complex problems into intermediate steps and consistently
generalize their thinking capability across diverse tasks [151, 133, 66].

4.2 How to Minimize Memory Usage?

Takeaway: Memory efficiency in LLMs is achieved through a multifaceted approach involv-
ing quantization, efficient attention mechanisms, and memory-saving training tricks.
Position: As LLMs continue to scale and diversify in deployment environments, the next
frontier in memory optimization lies in designing hardware-aware frameworks that adapt
memory-saving strategies based on computational context and task requirements.

Quantization. To minimize memory usage in LLMs, a spectrum of quantization techniques spanning
16-bit, 8-bit, and 4-bit precision [71, 76, 77] have been developed. 1 Models such as Qwen2.5
and ChatGLM series (e.g., GLM-4 and GLM-4-Air) typically utilize BF16 precision, balancing
memory savings and accuracy for general deployment. 2 Moving toward lower precision, models
like Llama 3, Llama 4 Behemoth, DeepSeek-V3, and Command A leverage FP8 quantization to
significantly enhance computational efficiency. Specifically, Llama 3 implements FP8 quantization
to boost throughput by 50% during inference, using dynamic scaling factors [126] for precision
retention. Similarly, Llama 4 Behemoth employs FP8 during pre-training, while DeepSeek-V3
integrates fine-grained online quantization strategies including tile-wise and block-wise grouping,
caching activations in FP8 and optimizing memory during MoE training. Command A also exploits
FP8 tensor cores for computational efficiency, though it maintains weights and optimizer state in FP32
for accuracy preservation. 3 At the ultra-low precision end, lightweight models including phi-3-
mini, Gemini 1.0 Nano, and ChatGLM-6B adopt aggressive 4-bit quantization strategies optimized
explicitly for resource-constrained environments like smartphones. Gemma 3 employs quantization-
aware training methods [51] to produce highly optimized, low-precision model variants. Collectively,
these advancements highlight the critical role of hardware-aware, context-adaptive quantization
strategies in optimizing memory use across diverse computational environments [56, 128, 57, 131].

Efficient Attention Mechanisms. To enhance memory efficiency in LLMs, many models employ
optimized efficient attention mechanisms, such as Grouped Query Attention (GQA), key-value (KV)
caching, sparse attention, and FlashAttention [42, 146, 21]. 1 GQA reduces compute and memory
usage by sharing keys and values across queries. It is widely adopted in Qwen2, Gemma 3, Llama 3,
Aya 23, and Command A. 2 KV cache can reduce the inference memory, as demonstrated in Llama
3, Qwen2, Qwen2.5, OpenELM, and GLM-4. Moreover, Llama 3 implements PagedAttention [60]
to dynamically allocate KV caches for higher throughput. Gemma 3 adopts FP8 quantization on
KV cache storage, addressing memory bottlenecks by compressing cache storage demands while
sustaining long-context capabilities. 3 Sparse and hybrid attention techniques are introduced by
several models to further optimize KV cache memory use. Specifically, Phi-3-small employs
blocksparse attention modules, alternating between sparse and dense layers to optimize KV cache
savings while maintaining long context retrieval performance, while Phi-4-Mini reduces KV cache
consumption to one-third of standard size. DeepSeek-V3 utilizes multi-head latent attention for
superior cache compression compared to regular multi-head attention. In contrast, Mistral 7B uses a
rolling buffer cache coupled with sliding window attention to cut cache usage by 8x without quality
loss. Command A applies a hybrid architecture of interleaved sliding window and full attention
in a 3:1 ratio, significantly reducing memory footprint. 4 FlashAttention is adopted in multiple
models as another key technique: Phi-3-small builds a custom Triton kernel for training, Mistral 7B
enhances its sliding window attention with FlashAttention for a 2x speedup over vanilla attention,
ChatGLM-6B expands context length from 2K to 32K using FlashAttention, and OpenELM
leverages it to compute scaled dot-product attention. Together, these advancements highlight the
growing importance and widespread adoption of memory-optimized attention strategies in modern
LLM development [79, 143, 90].
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Memory-Saving Training Tricks. Beyond quantization and efficient attention, several models imple-
ment distinct memory-saving training techniques to reduce GPU usage [61, 73]. Notably, Tülu 3
introduces two training tricks: caching DPO reference log probabilities to avoid keeping the model
in GPU memory, and using separate forward passes for chosen and rejected sequences instead of
concatenating them. This reduces GPU memory usage from about 60% to 40% on 8xH100 clusters
without affecting training loss. Similarly, DeepSeek-V3 adopts a multifaceted strategy: 1 recom-
puting all RMSNorm and Multi-latent Attention up-projections during backpropagation, 2 storing
model parameters on CPU, and 3 sharing embedding and output head parameters and gradients.
As these examples show, the next phase of memory efficiency will require dynamically adjusted
memory-saving strategies in line with the training tasks and computational environment [139, 5, 145].

4.3 How to Obtain a Smaller Model?

Takeaway: Distillation has become the dominant strategy for transferring capabilities and
performance from larger LLMs to smaller models.
Position: As the field matures, we envision a layered LLM ecosystem: a few ever-evolving
“super teacher” models pushing the boundaries of intelligence, paired with a diverse landscape
of compact student models that are distilled and trained for targeted domains and tasks.

Anchored by our takeaway, three broad patterns dominate the current practice of distillation in
obtaining a smaller model, including intra-family, cross-family, and task-targeted distillation [41, 34].
1 Intra-family distillation compresses capabilities within the same model family: Meta distills Llama

4 Maverick from Llama 4 Behemoth with an innovative loss function that dynamically adjust the
weights of soft and hard targets. Alibaba applies this strategy by distilling large models (Qwen3-32B,
Qwen3-235B-A22B) into the smaller models (Qwen3-14B/8B/4B/1.7B/0.6B, Qwen3-30B-A3B).
DeepSeek-V3 inherits reasoning capabilities from DeepSeek-R1. Google distills Gemini 1.0 Nano
and Gemini 1.5 Flash from their larger Gemini models. Moreover, Gemma 2 trains the smaller
models with distillation instead of relying on the next token prediction objective, and all Gemma 3
models across varying model sizes are trained with distillation. 2 Cross-family distillation indicates
the learning of a smaller model from a different model family. For example, Phi series (Phi-3,
Phi-4, and Phi-4-Mini) leverage distillation to learn from a strong teacher model such as GPT-4 and
GPT-4o, demonstrating the capability of building a strong but smaller LLM cross model families.
3 Task-targeted distillation aims to specialize smaller models for a particular task or capability. To
illustrate, DeepSeek-R1 demonstrates strong reasoning performance on a variety of tasks, and to
transfer this capability, DeepSeek-R1-Distill-Qwen and DeepSeek-R1-Distill-Llama were trained
using the 800k-sample dataset curated by DeepSeek-R1 itself. Similarly, Command A distills smaller
models using synthetic data generated by multiple larger teacher models, each specialized in distinct
tasks such as coding, explanation, or reasoning. Kimi k1.5 adopts a similar strategy by distilling
the reasoning capabilities and thinking priors from long-CoT models into more efficient short-CoT
models. Collectively, these efforts verify the effectiveness of distillation and point toward a future
where a few frontier models enables the emergence of task-specific efficient models and sustains an
expanding and layered LLM ecosystem [111, 86, 20, 123].

4.4 How to Accelerate Training and Inference?

Takeaway: Existing methods depend heavily on parallelism strategies and hardware-aware
optimizations to accelerate LLM training and inference.
Position: The next frontier in LLM acceleration lies in integrating hardware-adaptive paral-
lelism that aligns with model architectures and balances training and inference workloads
intelligently across heterogeneous compute resources.

Although minimizing memory usage (Section 4.2) and training a smaller model (Section 4.3) can
incidentally lead to acceleration, the following techniques are specifically designed for accelerating
training and inference.

Inference Parallelization. To accelerate inference, LLMs increasingly adopt hybrid parallelism
aligned with model architecture and hardware [95, 24, 155]. 1 Many LLMs accelerate infer-
ence through parallelism strategies such as tensor, pipeline, data, and expert parallelism. Tülu 3
uses 16-way tensor parallelism with vLLM. DeepSeek-V3 uses 4-way tensor, sequence, and 8-way
data parallelism for attention, 32-way expert parallelism for MoE, and 1-way tensor for dense MLPs.
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it also explores multi-token prediction for performance and speculative decoding. 2 However,
employing every parallelism method is not always optimal. Llama 3 adopts pipeline but avoids tensor
parallelism due to inter-node bandwidth and latency limits, highlighting the need for hardware-aware
parallelism strategies. 3 Parallelization can be integrated with hardware optimization techniques
and synchronization to further accelerate processing speed. Qwen2.5-1M combines multi-stage
pipeline parallelism with sparse attention kernels and proposes dynamic chunked pipeline parallelism,
which balances chunk sizes during long-context prefilling to eliminate pipeline bubbles. Additionally,
Qwen2.5-1M adopts the totally asynchronous generator to decouple the scheduler, model runner,
and decoder into separate processes, alleviating synchronization dependencies. Similarly, Phi-3
implements a kernel for the prefilling phase and extends the paged attention kernel in vLLM for the
decoding phase. Together, these approaches illustrate the trend toward hardware-aware inference
parallelism strategies that push the boundaries of LLM deployment efficiency [64, 16, 142].

Training Efficiency. Modern LLM training efficiency is increasingly determined by how well fine-
grained parallelism and parameter-efficient techniques are orchestrated [147, 49, 70]. 1 LLMs
employ a variety of parallelism techniques to enhance training throughput and efficiency. Models
such as Llama 3, Command A, Kimi k1.5, Gemini 1.0, and Gemma 2 use combinations of tensor,
pipeline, expert, and data parallelisms to scale across large clusters. Specifically, Llama 3 employs
tensor, pipeline, context, and data parallelisms and optimizes their order to match network hierarchy:
inner parallelism requires low-latency and high-bandwidth, while outer tolerates multi-hop latency.
Command A uses a JAX-based [25] distributed training framework to implement complex sharding,
including data, fully sharded data, sequence, and tensor parallelisms. Meanwhile, Kimi k1.5 only
keep tensor parallelism in the checkpoints and relies on Megatron [103] to implement pipeline and
expert parallelisms. At the infrastructure level, Gemini 1.0 and Gemma 2 both employ model and
data parallelisms across Google’s TPU clusters to effectively scale training. 2 Expert parallelism
is further emphasized in architectures involving MoEs. Mixtral 8x7B applies model and expert
parallelism to distribute MoE layers across GPUs, while DeepSeek-V3 employs 64-way expert,
16-way pipeline, and ZeRO-1 data parallelism to achieve fine-grained model distribution over 8 nodes.
3 Parameter-efficient training methods like low-rank approximations [37, 45] help accelerate training
by reducing the number of trained parameters. For example, OpenELM integrates LoRA [43] and
DoRA [74], while DeepSeek-V3 compresses key-value matrices with low-rank projection. Overall,
these strategies reveal that scalable and efficient LLM training depends on parallelism strategies and
training efficiency techniques [115, 114, 120].

Maximizing hardware utilization. LLMs accelerate training/inference by maximizing hardware uti-
lization via diverse strategies [69, 97, 11, 50]. 1 Several models leverage low-level software
optimizations and specialized compilation. Specifically, OLMo 2 boosts efficiency by compiling
PyTorch [6], reducing sync, offloading bookkeeping, and explicitly managing garbage collection. In
addition, Mixtral 8x7B boosts execution speed through high-performance specialized GPU kernel
using Megablocks [26]. 2 Hardware-aware design principles are also crucial. DeepSeek-V3 adapts
to current hardware and proposes future chips integrate higher precision, group-scaled Tensor Cores,
fused FP8 cast/memory operations, and direct transposed reads. A series of Gemini and Gemma
models utilize frameworks like JAX [12] and ML Pathways to effectively leverage the latest gen-
eration of hardware. 3 Efficient workload management can further increase hardware utilization.
Beyond Megatron and vLLM, Kimi k1.5 uses Kubernetes Sidecars to share all available GPUs and
co-locate training and inference in a single pod. 4 Hardware utilization can also be enhanced through
asynchronous training strategies, especially for RL. For example, Tülu 3 uses async PPO to decouple
inference and training, cutting GPU idle time. Llama 4’s async RL framework enables flexible GPU
allocation and achieves a 10x training efficiency gain over Llama 3. Ultimately, these approaches
reflect a growing emphasis on harmonizing software, hardware, and scheduling to intelligently
balance training and inference across diverse computational infrastructures [68, 48, 144, 153].

5 Conclusion

Our analysis of 31 influential LLMs reveals that the next generation of language models will be
shaped by strategic design choices that blend decoder-only architectures with modular enhancements,
adaptive post-training, and hardware-aware optimization. By synthesizing current trends and propos-
ing forward-looking directions, this paper provides a roadmap for building LLMs that are more
capable, efficient, and aligned with real-world demands and deployment constraints.
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