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Abstract

While recent Multimodal Large Language Models exhibit impressive capabil-
ities for general multimodal tasks, specialized domains like music necessitate
tailored approaches. Music Audio-Visual Question Answering (Music AVQA)
particularly underscores this, presenting unique challenges with its continuous,
densely layered audio-visual content, intricate temporal dynamics, and the critical
need for domain-specific knowledge. Through a systematic analysis of Music
AVQA datasets and methods, this position paper identifies that specialized in-
put processing, architectures incorporating dedicated spatial-temporal de-
signs, and music-specific modeling strategies are critical for success in this
domain. Our study provides valuable insights for researchers by highlighting
effective design patterns empirically linked to strong performance, proposing
concrete future directions for incorporating musical priors, and aiming to estab-
lish a robust foundation for advancing multimodal musical understanding. This
work is intended to inspire broader attention and further research, supported
by a continuously updated anonymous GitHub repository of relevant papers:
https://github.com/xid32/Survey4MusicAVQA.

1 Introduction

“Music is a moral law. It gives a soul to the Universe, wings to the mind, flight to
the imagination, a charm to sadness, gaiety and life to everything.”

— Plato (c. 427–347 BCE, Ancient Greece)

Multimodal Large Language Models (MLLMs) have demonstrated impressive efficacy across a wide
range of tasks, modelling various modalities such as text, image, and audio [1, 2, 3, 4, 5, 6]. However,
this success brings forth a critical consideration: the tension between the broad applicability of
general multimodal approaches and the requirements of specialized domains [7, 8, 9]. This leads to a
central question: Are general-purpose MLLMs, despite their advancements, truly sufficient for all
multimodal tasks, especially those demanding deep, domain-specific understanding?

Music Performance Audio-Visual Question Answering (Music AVQA) emerges as a particularly
challenging multimodal domain that compellingly illustrates this tension [10, 11, 12, 13]. Music, in
its rich complexity, often requires specialized treatment beyond the capabilities of generic models [14,
15, 16, 17, 18, 19, 20, 21, 22]. Unlike common scenarios with sparse and discrete audio signals,
music performances exhibit a continuous and tightly interwoven blend of audio and visual signals,
offering a uniquely rich context for fine-grained audio-visual scene understanding and temporal
reasoning [10, 11, 14, 23, 24, 25]. For instance, tasks such as discerning the loudest instrument
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What does the black puppy do after barking suddenly?

It bites the pillow shortly after the sudden barking. 

(i) Temporal Reasoning under Sparse Audio from VGG-Sound

Is the guzheng on the right more rhythmic than acoustic guitar?

Yes, guzheng produces more distinct and repeated plucking patterns. 

(ii) Rhythm Comparison under Dense Audio from Music-AVQA

Figure 1: Contrast between (i) conventional QA and (ii) Music-AVQA with dense audio. Panel
(i) shows an isolated sound (barking) and synchronized action, which are relatively easy to detect.
Panel (ii) exemplifies music’s complexity, featuring overlapping instruments and rhythmic patterns.
Such dense and continuous audio-visual signals demand fine-grained temporal and spatial reasoning
through cross-modal comparisons and they are more challenging than conventional multimodal QA.

amidst an ensemble or comparing rhythmic complexity between two spatially distinct performers
demand a level of granularity that general-purpose MLLMs may not inherently possess [9, 14, 24].
Thus, Music AVQA serves as an ideal lens through which to examine the limitations of general
multimodal approaches and to advocate for the necessity of domain-specific adaptations [10, 14].

The unique challenges of Music AVQA, illustrated in Figure 1, stem from the need to reason over
continuous, temporally evolving, and densely layered audio-visual signals. Specific complexities
include: First, musical pieces often contain dense and layered audio information. Multiple overlap-
ping instrumental sources are common, which necessitates fine-grained processing to disentangle
and interpret complex auditory scenes. Second, effective understanding depends on precise temporal
alignment. It is crucial to accurately associate visual cues—such as a musician’s actions—with their
corresponding auditory outputs. This alignment must occur across multiple timescales and often
involves intricate temporal dynamics. Third, the domain frequently requires specialized knowledge.
This includes instrument recognition, familiarity with musical theory (such as rhythm and harmony),
and an understanding of performance conventions, whether these are explicit or implicit. Finally,
Music AVQA questions often involve complex spatial-temporal relationships. For example, one
may need to track dynamic intensity across simultaneous sources (“Which instrument produces the
loudest sound?”) or reason about spatial and temporal rhythmic patterns (“Is the cello on the right
more rhythmic than the cello on the left?”). Collectively, these factors underscore the unique and
demanding nature of reasoning in Music AVQA.

This study argues that Music AVQA is a fundamentally distinct multimodal reasoning task,
for which specialized multimodal designs are essential and empirically linked to strong model
performance. As the first comprehensive survey in this area, we specifically analyze how tailored
designs—particularly in input processing and spatial-temporal architecture—enable more effective
music understanding compared to generic multimodal systems. Furthermore, we outline how such
specialized approaches, by incorporating deeper musical priors, can further advance the field.

2 Background

Why Music AVQA is more challenging than normal multimodal understanding? Music AVQA
presents several distinctive challenges: 1 Dense Signal Interpretation: Unlike sparse au-
dio events in conventional AVQA, music performances feature continuous, overlapping instru-
mental sources that require sophisticated separation and attribution; 2 Hierarchical Temporal
Reasoning: Musical information unfolds across multiple time scales (beats, phrases, sections),
demanding models capable of reasoning across these hierarchical structures; 3 Cross-Modal
Correspondence: Establishing reliable associations between visual instrumental actions and their
acoustic outputs is complicated by temporal misalignments between physical gestures and the re-
sulting sounds; 4 Domain-Specific Knowledge: Effective reasoning often depends on implicit
musical knowledge, such as instrumental techniques, ensemble conventions, and acoustic proper-
ties; 5 Abstract Attribute Quantification: Questions involving subjective qualities such as
“rhythmic", “melodic,” or “harmonious” require computational strategies to map linguistic descriptors
onto measurable signal properties; 6 Data Scarcity: The specialized nature of musical perfor-
mances results in smaller and less diverse datasets compared to general AVQA tasks, limiting the
generalization capabilities of trained models.
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What are common music performance scene types? 1 Solo Performance – A single musician
showcasing technical skills and artistic expression on one instrument. 2 Ensemble of the Same
Instrument – Multiple musicians playing identical or related instruments, creating unified harmonies
and textures. 3 Ensemble of Different Instruments – Musicians performing with a variety of
instruments, producing diverse tonal colors and complex musical interactions. 4 Culture-Specific
Ensemble – Traditional instrumental groups that embody the musical heritage and regional styles of
specific cultures. See Appendix Section B for examples.

What are common question types in Music AVQA? 1 Existential Questions: Determine
whether a sound corresponds to a visible object in the scene (e.g., “Is this sound from the instrument
in the video?"). 2 Counting Questions: Quantify audio-visual elements that require cross-modal
integration (e.g., “How many instruments are sounding in the video?"). 3 Location Questions:
Identify the spatial position of sound sources within the visual scene (e.g., “Where is the first
sounding instrument?"). 4 Comparative Questions: Compare properties across different audio-
visual elements (e.g., “Is the instrument on the left louder than the one on the right?"). 5 Temporal
Questions: Reason about the timing and sequential relationships between auditory and visual events
(e.g., “Which instrument produces sound before the piano?"). See Appendix Section C for examples.

3 Evolution of MUSIC-AVQA Datasets

The development of Music AVQA research has been driven by progressively refined datasets address-
ing specific limitations. As summarized in Table 6 in Appendix Section E, this evolution began with
the 1 MUSIC-AVQA dataset [10], the first large-scale benchmark designed specifically for AVQA
in musical contexts, comprising 9,288 performance videos and 45,867 question-answer pairs across
diverse reasoning tasks. Subsequent research reveal challenges related to data bias and imbalanced
answer distributions, prompting the creation of 2 MUSIC-AVQA v2.0 [11], which expands to
10,518 videos and approximately 54,000 question-answer pairs. This version balance 15 biased
templates by ensuring no dominant answers exceed 60% for binary questions or 50% for multi-class
questions, particularly enhancing representation in various question categories. Building on these
foundations, 3 MUSIC-AVQA-R [23] introduces robustness evaluation through question rephrasing,
expanding the test set from 9,129 to 211,572 questions. With a vocabulary five times larger than the
original dataset, MUSIC-AVQA-R distinguishes between head (common) and tail (rare) samples,
enabling assessment of model performance in both in-distribution and out-of-distribution scenar-
ios. This progressive refinement of datasets has laid a solid foundation for advancing multimodal
understanding and robust evaluation in music performance environments.

4 Categorization of Music AVQA Methods Based on Architecture

Music AVQA methods exhibit diverse architectural designs, particularly in how they encode and
integrate textual, visual, and auditory modalities. To better organize existing approaches by their core
modeling strategies, we categorize them into three groups—Transformer-based, CNN-based, and
Hybrid models—as summarized in Table 1. This categorization highlights how different models are
structured to handle the continuous and densely layered nature of musical performances.

Transformer-based models. Transformer-based models are characterized by the extensive use of
self-attention mechanisms, which benefit in particular from their ability to handle long-range temporal
dependencies and fine-grained cross-modal alignment. Methods such as Amuse utilize transform-
ers across all modalities, combining a Swin Transformer for visual processing with an HTS-AT
transformer for audio encoding, and employing cross-modal adapters to facilitate early and frequent
fusion of multimodal information. Similarly, LAST-Att integrates a Swin-V2 Transformer for vision
and an Audio Spectrogram Transformer (AST) for audio, emphasizing fine-grained spatial-temporal
alignment through pixel-level cross-modal attention. Other methods such as LAVisH and LSTTA,
adopt lightweight transformer adapters to inject multimodal cues into frozen transformer backbones,
enabling efficient cross-modal reasoning while leveraging strong pre-trained representations.

CNN-based models. CNN-based methods typically utilize convolutional backbones such as ResNet
or VGGish to encode modality-specific information into global or regional features, often relying
on simpler late-stage fusion strategies. The AVST method exemplifies this approach, combining
ResNet-18 visual embeddings and VGGish audio features through spatial attention modules to
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Table 1: Architectural summary of representative Music AVQA methods. Each method lists the text,
visual, and audio encoders used, along with an indication of whether explicit spatial-temporal (S-T)
modeling is incorporated. Detailed descriptions of each method are provided in Appendix F and G.

METHOD Text Encoder Visual Encoder Audio Encoder S-T

AMUSE [14] Transformer [26] Swin-Transformer-v2 [27] HTS-AT [28] ✓
AUDIO FLAMINGO [29] OPT-IML-MAX-1.3B [30] - ClapCap [31] ✓
AVMOE [32] - Swin-Transformer-v2 [27] HTS-AT [28] ×
AVSD [33] LSTM LSTM LSTM ×
AVSIAM [34] - ViT [35] ViT [35] ×
AVST [10] LSTM ResNet-18 [36] VGGish [37] ✓
CAT [13] LLaMA2-7B [38] ImageBind [1] ImageBind [1] ×
CHATBRIDGE [39] Vicuna-13B [40] ViT-G [41] BEATs [42] ×
CIGN [43] - ResNet-18 [36] ResNet-18 [36] ✓
COCA [44] Word Embedding ResNet-18 [36] VGGish [37] ×
CONVLSTM [45] LSTM - Conv ×
CROSSMAE [46] - MAE [47] AudioMAE [48] ×
DCL [49] DeBERTa-V3-Large [50] ViT [35] AST [51] ✓
DG-SCT [52] - ViT [35] HTS-AT [28] ✓
EEMC [53] RoBERTa [54] ViT [35] VGGish [37] ✓
FCNLSTM [45] LSTM - Conv ×
GPT-4O [4] Transformer CLIP-ViT Transformer ×
GRU [55] LSTM VGGNet [56] - ×
HCRN [57] BiLSTM ResNet-18 [36] - ×
LAST-ATT [11] LSTM Swin-Transformer-v2 [27] Audio-Spectrogram-Transformer ✓
LAVISH [58] - ViT [35] ViT [35] ✓
LAVIT [59] Transformer [26] Transformer [26] Transformer [26] ✓
LSTTA [60] CLIP [35] CLIP [35] w2v-Conformer [61] ✓
MAVEN [62] Mixtral InternViT-300M-448px [63] Transformer ×
MCAN [64] GloVe [65]+LSTM Faster R-CNN [66] - ×
MCCD [23] - - - ✓
MEERKAT [67] LLaMA2-7B [38] CLIP-ViT CLAP [68] ✓
OGM [69] - ResNet-18 [36] ResNet-18 [36] ×
ONELLM [2] LLaMA2-7B [38] CLIP-ViT Unified Multimodal Encoder ×
OPM [69] - ResNet-18 [36] ResNet-18 [36] ×
PSAC [70] Word Embedding CNN - ×
PSTP-NET [25] CLIP [35] CLIP [35] VGGish [37] ✓
QAP [5] DeBERTa-V2-XLarge CLIP [35] CLAP [68] ×
QWEN2.5-VL [3] MRoPE [3] ViT [35] - ×
REFATOMNET [71] BERT ViT [35] - ✓
VALOR [72] BERT CLIP [35] AST [51] ×
VAST [73] BERT [74] ViT [75] BEATs [42] ×
VIDEOLLAMA-2 [76] Transformer CLIP [35] BEATs [42] ✓
VITA [77] Mixtral [78] InternViT-300M-448px [63] CNN ×

explicitly localize sound sources within visual frames. PSTP-Net extends this design by introducing
a progressive refinement strategy that sequentially filters temporal segments and spatial regions,
systematically narrowing down question-relevant audio-visual content prior to fusion. Although
CNN-based models are computationally efficient and straightforward, their reliance on late fusion may
pose challenges to capturing the complex temporal dynamics characteristic of musical performances.

Hybrid models. Hybrid models combine CNNs, transformers, and large language models (LLMs)
to enable unified multimodal reasoning. They typically employ pre-trained encoders from both
CNN and transformer families, integrated through sophisticated cross-modal fusion mechanisms.
Representative examples include ChatBridge, CAT, OneLLM, and Meerkat. ChatBridge utilizes a
perceiver-based multimodal transformer to merge modalities via language-aligned latent representa-
tions, followed by a frozen LLM for reasoning. CAT introduces modality-specific clue aggregation
modules on top of ImageBind encodings, enabling precise question-driven multimodal grounding
before passing information to a generative LLaMA2 LLM. OneLLM further generalizes multimodal
integration by introducing a universal projection mechanism that allows a single LLM to interpret
diverse modality embeddings seamlessly. In contrast, Meerkat emphasizes fine-grained cross-modal
alignment through an audio-visual optimal transport module that explicitly matches audio segments
to corresponding visual regions, achieving strong performance on tasks requiring precise localization
of sound sources, underscoring the benefit of precise local grounding for complex audio-visual
interactions in musical contexts.

5 A Call on Specialized Multimodal Input Processing for Music AVQA

While input preparation is often treated as a fixed pipeline in general AVQA, music performance
settings introduce unique challenges that make input fidelity, segmentation, and representation design
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especially consequential. Musical scenes are densely layered, temporally continuous, and rich
in expressive detail, requiring greater care in how audio, visual, and textual inputs are captured
and structured. In what follows, we examine how Music AVQA tasks motivate specialized input
processing across three key fronts: maintaining high-resolution and synchronized multimodal signals,
adapting tokenization to the structure of musical content, and managing the scale and diversity of
music-specific data representations.

Continuous, high-fidelity, and tightly aligned inputs are foundational. Compared to event-
centric AVQA tasks that typically involve short, discrete sound events and lower-resolution recordings,
Music AVQA deals with continuous, polyphonic streams spanning multiple spatial and temporal
scales. Audio is commonly sampled at high rates (44.1 kHz or above) and often preserved in lossless
formats to retain subtle timbral and articulatory detail [79]. Visual inputs similarly tend to require
higher resolution (1080p or above) and frame rates (30–60 fps) to capture nuanced performer motions
such as bowing or fingering [80, 81]. Even modest temporal offsets—around 100–200ms—can affect
the perceived correspondence between gesture and sound. To improve synchronization and cue
isolation, some recent models adopt preprocessing strategies like beat-based segmentation [82] and
harmonic-percussive separation [83], which can help surface rhythmically or acoustically meaningful
content for downstream reasoning.

Tokenization strategies benefit from musical adaptation. Tokenization plays a central role in
structuring inputs for multimodal reasoning, and recent Music AVQA models often tailor their
strategies to preserve musical structure. For audio, models such as AMUSE [14], DG-SCT [52], and
PSTP-NET [25] transform waveforms into Mel-spectrograms, which are then segmented via patch-
based encoders like AST [51] and HTS-AT [28] or CNNs such as VGGish [37] and ResNet-18 [36].
AUDIO FLAMINGO [29], for instance, uses overlapping 7-second windows in CLAPCAP [31] to
embed long-range audio context. Visual streams are frequently tokenized using ViT [35] or Swin-
based [27] patch embeddings (e.g., in AVSIAM [34] and LAVISH [58]), while earlier models like
AVST [10] use frame-level CNN features. Text tokenization is typically handled by subword models
aligned with large language models (e.g., LLAMA2 [38], ROBERTA [54]), as seen in CHATBRIDGE
[39] and ONELLM [2]. These tokenization schemes help preserve temporal granularity and modality
alignment, which may be important for interpreting overlapping instruments, rhythmic changes, and
localized visual cues.

Musical content introduces distinct data and representational considerations. Music AVQA
tasks often involve long-form performances with overlapping sources and evolving musical dynamics,
which can create challenges for segmentation, annotation, and generalization. Unlike typical AVQA
datasets centered on short clips and isolated actions, music-focused benchmarks (e.g., MUSIC-
AVQA [10]) include multi-instrument performances spanning several minutes. These conditions
place greater demands on dataset diversity to avoid overfitting to genre-specific patterns or ensemble
configurations. To broaden coverage, some models are trained on data drawn from live performances,
studio recordings, and synthetic renderings. However, the absence of symbolic structure can limit
the model’s access to mid-level grounding. In this context, musically informed preprocessing (e.g.,
onset alignment, rhythmic segmentation, graph representation learning [84]) may support more
interpretable and temporally aligned input representations.

6 A Call on Specialized Spatial-Temporal Designs for Music AVQA

We systematically analyze the models listed in Table 1 to identify architectural factors associated with
strong Music AVQA performance across diverse multimodal designs. Each model is annotated based
on whether it incorporates spatial-temporal design, defined as architectural components explicitly
aimed at localizing audio-visual content in space and time—such as temporal segment selection,
spatial attention, or cross-modal alignment modules. This categorization enables us to assess whether
high-performing models exhibit structural traits aligned with the temporally continuous and spatially
layered nature of musical performances.

To assess the empirical impact of spatial-temporal design, we evaluate Music AVQA models across
representative question types grouped by modality—audio, visual, and audio-visual—as shown in Fig-
ure 2. Each subplot compares model accuracy on a specific QA type, with bars color-coded to indicate
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whether spatial-temporal design is applied for the relevant modality. This setup allows precise attribu-
tion of performance differences to design choices. To capture broader trends, Figure 3 summarizes
average accuracy across all 13 QA categories using radar plots on two benchmarks: Music-AVQA and
Music-AVQA-R. These visualizations reveal that models with spatial-temporal design consistently
outperform their counterparts, particularly in tasks involving fine-grained localization or temporal
sequencing. The full quantitative results supporting these figures are reported in Appendix A, Tables 2,
3, and 4. This experimental design enables systematic assessment of spatial-temporal design as a key
architectural driver of multimodal reasoning in musical environments.
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(g) Audio-Visual Comparative QA.
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(h) Audio-Visual Temporal QA.
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(i) Audio-Visual QA Average.

Figure 2: Accuracy comparison of Music AVQA models across representative question types, grouped
by modality: (a–b) Audio, (c–e) Visual, and (f–i) Audio-Visual. Each bar corresponds to a model
and is color-coded based on whether it incorporates spatial-temporal design for the relevant task
type: bars in green , purple , and orange represent models that apply spatial-temporal modeling
to Audio-related, Visual-related, and Audio-Visual-related question answering, respectively; bars
in blue represent models without spatial-temporal design. Across most categories, models with
spatial-temporal components tend to perform more accurately, particularly on tasks requiring temporal
reasoning or spatial localization. These patterns suggest that incorporating spatial-temporal design
supports more effective reasoning in musically structured multimodal environments.

Spatial-temporal design enhances audio QA by supporting fine-grained tracking of overlapping
sources and temporally evolving acoustic cues. Audio-related questions in Music AVQA—such
as instrument counting or loudness comparison—require models to distinguish simultaneous sound
sources, localize temporal onsets, and resolve dynamic variations across time. As shown in Fig-
ures 2(a) and 2(b), models with spatial-temporal design consistently outperform others. LAST-
ATT [11] achieves the highest audio counting accuracy at 85.71%, benefiting from repeated cross-
attention between question-guided Swin-Transformer features and spectrogram patches from an Audio

6



A-Counting

A-Comparative

A-Average

V-Counting
V-Location

V-Average

AV-Existential

AV-Counting

AV-Location

AV-Comparative
AV-Temporal

AV-Average

Total-Average

A-Counting

50
60

70
80

90

(a) Methods on Music-AVQA [10].

A-Counting

A-Comparative

A-Average

V-Counting
V-Location

V-Average

AV-Existential

AV-Counting

AV-Location

AV-Comparative
AV-Temporal

AV-Average

Total-Average

A-Counting

30
40

50
60

70

(b) Methods on Music-AVQA-R [23].

Figure 3: Radar plots showing the per-type average accuracy of model groups with and without
spatial-temporal design across 13 QA categories on (a) Music-AVQA [10] and (b) Music-AVQA-
R [23]. Each axis corresponds to a QA type spanning audio, visual, and audio-visual reasoning,
including the overall average (Total-Average). The filled green polygon in Figure 3(a) and purple
polygon in Figure 3(b) represent the mean accuracy across QA types for models with spatial-temporal
design, while the blue polygon represents the average performance of models without such design.
Models with spatial-temporal design consistently achieve higher accuracy across all modality groups.
These advantages persist under distribution shift in the robustness-focused Music-AVQA-R dataset.

Spectrogram Transformer, which helps the model focus on musically salient moments. AMUSE [14],
with 83.58% average audio QA accuracy, aligns audio-video streams using beat-synchronous features
and temporally-adaptive fusion modules, allowing it to isolate relevant auditory content even under
polyphonic conditions. DG-SCT [52] further introduces bidirectional attention layers across tempo-
ral, spatial, and channel dimensions, dynamically adjusting audio-visual focus based on the question’s
semantics. By contrast, models lacking spatial-temporal structure—such as MCAN (67.47%) and
CONVLSTM (66.73%)—often rely on global feature pooling or frame-agnostic fusion, making
them vulnerable to overlap, misalignment, and temporal drift. Notably, spatial-temporal designs
adopt recurring architectural motifs: temporal segment selection (PSTP-NET [25], AVST [10]),
audio-guided visual attention (DG-SCT, LSTTA [60]), and fine-grained cross-modal alignment
(MEERKAT [67]). These mechanisms are well-suited for modeling music’s complex structure, where
overlapping instruments and evolving rhythms require localized reasoning in both time and space.
The strong performance of spatial-temporal models across audio QA tasks confirms their value in
resolving multi-instrument scenarios and detecting temporally grounded acoustic attributes.

Spatial-temporal design improves visual QA by enhancing spatial disambiguation and capturing
motion cues over time. Visual-related questions in Music AVQA—such as counting instruments or
identifying positions—often involve tracking multiple performers, detecting visual cues of articulation
(e.g., bowing, striking), and resolving spatial relationships within densely packed frames. As
shown in Figures 2(c)–2(e), models with spatial-temporal components generally achieve stronger
accuracy. For example, LSTTA [60] (82.03% visual QA average) combines short-term semantic
interaction and long-term semantic filtering modules to capture both local gestures and global
scene dynamics, enabling precise reasoning about when and where instruments are engaged. DG-
SCT [52] (82.08%) uses cross-modal temporal attention guided by audio prompts to enhance visual
token selection, focusing on visually active regions corresponding to sounding instruments. PSTP-
NET [25] (77.26%) implements a region refinement module that explicitly filters visual patches within
question-relevant segments, improving spatial disambiguation. While spatial-temporal modeling is
effective, some models without it still perform competitively—most notably CAT [13] (86.10%),
which leverages large-scale pretrained vision encoders (ImageBind) and LLaMA2 to infer structure
implicitly. However, such models may rely heavily on correlation learned from pretraining, rather
than explicit reasoning about visual dynamics. Spatial-temporal models, by contrast, explicitly model
the temporal unfolding of gestures and the spatial focus of performer activity—important properties
in musical scenes where instrument positions are static but their activation varies over time. These
architectural patterns help stabilize attention and reduce confusion when multiple instruments are
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visually present but only some are active, contributing to more consistent visual QA performance
across counting and localization tasks.

Spatial-temporal design is critical for audio-visual QA, where accurate reasoning requires
precise temporal and spatial alignment between modalities. Among all Music AVQA categories,
audio-visual questions impose the strongest demand on cross-modal synchronization, requiring
the model to associate specific acoustic events with their visual sources over time. As shown in
Figures 2(f)–2(i) and Table 2, models with spatial-temporal components consistently achieve higher
accuracy across AV-Existential, AV-Counting, AV-Location, AV-Comparative, and AV-Temporal
types. AMUSE [14] reaches 82.43% on overall AV questions by leveraging segment-level alignment
between synchronized beat-level audio and video inputs and applying cross-modal adapters at each
step. PSTP-NET [25] adopts a progressive three-stage pipeline: temporal segment selection, spatial
region refinement, and audio-guided attention, resulting in 72.57% AV average. MEERKAT [67]
further enhances local alignment by explicitly modeling cross-modal transport between audio patches
and visual regions, and enforces bounding box constraints for grounding, yielding strong performance
on AV-Comparative and AV-Location. In contrast, models without spatial-temporal design—such as
MCAN (57.80%), GPT-4O (50.08%), and QWEN2.5-VL (47.75%)—struggle to resolve fine-grained
multimodal relationships. While CAT [13] achieves 83.20% AV average through large-scale pre-
trained encoders, its performance drops on AV-Temporal and AV-Location tasks that require precise
temporal ordering or spatial binding. These results support that spatial-temporal designs—especially
those involving temporally segmented reasoning, audio-guided spatial focus, and per-frame fu-
sion—enable the model to track which instrument is sounding, when, and in which location, which is
critical for answering questions such as “Did the cello on the left play after the drum on the right?”.
Without such structure, models tend to conflate co-occurring signals or miss temporally offset actions,
leading to lower accuracy in complex cross-modal scenarios.

Spatial-temporal design provides a generalizable advantage across diverse Music AVQA tasks.
Our analysis reveals that models equipped with spatial-temporal design, such as beat-synchronous
segment alignment in AMUSE, progressive temporal-spatial filtering in PSTP-NET, and audio-guided
token selection in DG-SCT—achieve consistently higher accuracy across audio (e.g., LAST-ATT:
85.71%), visual (e.g., LSTTA: 82.03%), and audio-visual (e.g., AMUSE: 82.43%) question types.
These performance gains are particularly pronounced on tasks requiring temporal ordering or cross-
modal localization, as shown in Figures 2 and 3. Despite some strong baselines using large-scale
pretrained encoders, we observe that models lacking spatial-temporal design struggle with tasks
requiring temporal resolution or spatial grounding. Notably, many high-performing models adopt a
common architectural pattern: (1) identifying question-relevant time segments, (2) focusing on spatial
regions associated with sound cues, and (3) fusing modalities with fine-grained temporal awareness.
This recurring design motif underscores spatial-temporal design as not only empirically effective, but
also structurally aligned with the demands of reasoning over continuous, densely layered music data.

7 A Call on Specialized Musical Designs for Music AVQA

Current Music AVQA models typically treat musical audio as generic acoustic input, operating
directly on spectrograms or waveforms without incorporating structured musical attributes such as
tempo, downbeats, key, or chord progressions. More fundamentally, human understanding of music
relies on hierarchical temporal structure, harmonic organization, and latent causal intent—all of
which are shaped by domain-specific knowledge and perceptual priors. Inspired by this observation,
we argue that musical audio should not be treated as a raw signal alone, but as a richly structured
modality requiring embed musical priors and inductive structure into models.

Incorporating fine-grained musical event cues. To support precise temporal reasoning over
musical events—such as the entrance or exit of specific instruments—models can benefit from
auxiliary timestamp supervision derived from musically meaningful proxies. For example, combining
waveform peak analysis, Mel-frequency cepstral coefficients (MFCCs), and spectral change detection
can help identify dynamic shifts in the audio stream. Beat-tracking algorithms (e.g., from Librosa)
can segment audio by rhythm, while pitch-based estimators (e.g., Aubio’s YIN) can trace changes in
dominant frequency to indicate evolving instrumental activity. These mid-level cues can be used to
generate pseudo-labels for training timestamp encoders, enabling models to better localize temporally
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anchored events. Embedding such representations into Music AVQA pipelines may improve event-
level understanding and enhance the interpretability of the model’s temporal predictions.

Embedding mid-level musical structure into multimodal models. Structured musical fea-
tures—such as tempo, key, downbeats, and chord progressions—can provide a coherent framework for
aligning audio-visual inputs across time. These symbolic or MIR-derived signals offer interpretable,
temporally smooth trajectories that reflect the hierarchical organization of music, such as phrases,
sections, and transitions. Crucially, they abstract away from low-level waveform fluctuations and offer
a musically meaningful scaffold that persists across different genres, tempos, and instrumentation.
By integrating them as auxiliary inputs or attention-guiding signals, models may improve their ability
to capture long-range dependencies, maintain rhythmic continuity, and resolve ambiguous instrument
interactions—especially in polyphonic or ensemble contexts. This structured conditioning can serve
as a musical inductive bias, particularly helpful in complex multimodal scenes where overlapping
sources challenge simple bottom-up fusion strategies, and where salient events may not be visually or
acoustically distinct without temporal alignment cues.

Modeling latent musical reasoning trajectories. Many Music AVQA questions require reasoning
over implicit causal or temporal relationships—for example, identifying which performer initiated
a musical phrase, or determining whether an instrument’s entrance shifted the ensemble’s dynamic
balance. These questions often lack explicit step-level supervision, making it difficult to learn rea-
soning paths from labels alone. To address this, models can incorporate latent reasoning trajectories:
structured internal variables that represent evolving hypotheses about the musical scene. Rather than
directly mapping inputs to answers, the model infers intermediate latent states—such as “which instru-
ment is currently leading,” “how the rhythmic intensity is changing,” or “which performer is preparing
to enter”—and updates these states over time as more multimodal evidence arrives. Architecturally,
this can be implemented via hierarchical latent-variable models or recurrent variational modules,
where latent states encode musical intentions, transitions, or causal flow. These hidden trajectories
allow the model to simulate plausible sequences of musical events, enabling it to answer questions
that require extrapolating or filling in missing links between observed signals. Crucially, this style of
latent reasoning supports robust generalization by embedding inductive structure aligned with how
humans infer musical cause and progression—not just surface-level audio-visual co-occurrence.

Supervising chain-of-thought reasoning in musical QA. Some musical questions—especially
those involving temporal or causal dependencies—require sequential sub-decisions to reach the
correct answer. For instance, the question “Which instrument enters after the piano stops?” involves:
(1) detecting piano cessation, (2) identifying subsequent onsets, and (3) selecting the earliest new
instrument. Rather than treating such questions as black-box classification, models can be explicitly
trained to emit intermediate reasoning steps, either through supervised rationales or pseudo-labels
derived from MIR-based event detection. This approach—akin to chain-of-thought (CoT) prompting
in LLMs—improves transparency, encourages modular subgoal learning, and helps the model
maintain alignment across modalities. Moreover, step-wise supervision can highlight failure points
in temporal or semantic inference, offering clearer diagnostics for model improvement. In music
contexts, CoT chains can incorporate domain-specific steps such as beat alignment, timbre matching,
or onset-event attribution. These interpretable intermediate traces not only support higher accuracy
on multi-stage queries but also make it easier to identify reasoning shortcuts and dataset biases.

8 Conclusion

This paper underscores the limitations of general-purpose MLLMs for domain-specific tasks such as
Music AVQA. Successful Music AVQA necessitates specialized designs tailored to musical content’s
unique demands: fine-grained audio-visual processing, precise temporal modeling, and integrated
domain knowledge. Our central position is that while general models advance, specialized domains
require tailored solutions. We call on the research community to: 1) develop more nuanced music
understanding benchmarks, and 2) explore hybrid architectures combining MLLM strengths with
music-specific components. The future of effective multimodal AI lies not in a universal approach, but
in the thoughtful integration of general capabilities with deep, domain-specific expertise, benefiting
music understanding and other complex fields.
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A Quantitative Comparison on Music AVQA Datasets

We present comprehensive quantitative comparisons of recent state-of-the-art methods on multiple
Music AVQA datasets [10, 11, 23], shown in Table 2, 3, and 4. We evaluate the models across a
diverse set of question categories, spanning Audio-related, Visual-related, and Audio&Visual-related
reasoning tasks. For each dataset, we report accuracy metrics for subcategories such as Counting,
Comparative, Location, Existential, and Temporal reasoning, along with average accuracy within
each modality and the overall performance.

Table 2: Comparison with state-of-the-art methods on the Music AVQA [10] test set. We report
the accuracy for Audio (Counting, Comparative), Visual (Counting, Location), and Audio-Visual
(Existential, Counting, Location, Comparative, Temporal) question types, along with the average
accuracy for Audio, Visual, Audio-Visual, and overall. Methods highlighted with a gray background
incorporate spatial-temporal designs.

Methods Audio-related QA Visual-related QA Audio&Visual-related QA Avg
Count Comp Avg Count Local Avg Exist Count Local Comp Temp Avg

AMUSE [14] 84.61 82.45 83.58 87.41 84.39 85.84 86.95 85.49 73.01 82.98 83.06 82.43 83.52
AUDIO FLAMINGO [29] - - - - - - - - - - - - -
AVMOE [32] - - 77.60 - - 82.70 - - - - - 71.90 75.70
AVSD [33] 72.41 61.90 68.52 67.39 74.19 70.83 81.61 58.79 63.89 61.52 61.41 65.49 67.44
AVSIAM [34] - - - - - - - - - - - - -
AVST [10] 77.78 67.17 73.87 73.52 75.27 74.40 82.49 69.88 64.24 64.67 65.82 69.53 71.59
CAT [13] - - 84.90 - - 86.10 - - - - - 83.20 84.30
CHATBRIDGE [39] - - 28.90 - - 33.10 - - - - - 43.00 78.90
CIGN [43] - - - - - - - - - - - - -
COCA [44] 79.94 67.68 75.42 75.10 75.43 75.23 83.50 66.63 69.72 64.12 65.57 69.96 72.33
CONVLSTM [45] 68.88 63.06 66.73 64.89 58.55 61.68 82.81 55.99 61.30 53.45 54.73 61.75 62.61
CROSSMAE [46] - - - - - - - - - - - - -
DCL [49] - - - - - - - - - - - - -
DG-SCT [52] 83.27 64.56 76.34 81.57 82.57 82.08 81.61 72.84 65.91 64.22 67.48 70.56 74.62
EEMC [53] - - - - - - - - - - - - -
FCNLSTM [45] 69.96 61.06 66.67 63.89 58.14 60.98 83.42 56.31 60.28 50.85 56.92 61.46 62.25
GPT-4O [4] 65.42 36.07 50.75 72.36 62.30 67.33 56.12 54.84 59.23 37.84 42.35 50.08 54.06
GRU [55] 71.82 58.90 67.04 66.06 71.82 68.97 81.41 60.30 62.32 56.23 61.89 64.26 66.00
HCRN [57] 70.21 45.62 61.14 62.41 51.51 56.90 52.94 42.07 54.70 50.59 33.33 48.41 52.54
LAST-ATT [11] 85.71 63.10 - 83.86 83.09 - 76.47 76.20 68.91 65.60 66.75 - 75.45
LAVISH [58] 75.59 84.13 76.86 77.45 72.91 76.29 71.91 77.52 75.81 76.75 77.62 76.31 76.10
LAVIT [59] 74.36 64.56 70.73 69.39 75.65 72.56 81.21 59.33 64.91 64.22 63.23 66.64 68.93
LSTTA [60] 81.75 82.04 81.90 81.82 82.23 82.03 83.46 79.11 78.23 78.02 79.32 79.63 81.19
MAVEN [62] 79.44 54.10 72.79 80.49 93.50 86.99 87.00 66.67 73.85 54.95 68.24 69.94 74.60
MCAN [64] 75.05 54.58 67.47 68.06 72.15 70.13 81.91 54.15 53.45 52.11 47.21 57.80 62.77
MCCD [23] 83.87 71.04 79.14 79.78 76.73 78.24 80.87 51.63 71.46 64.67 64.60 67.13 72.20
MEERKAT [67] - - - - - - - 85.70 - 75.98 - - -
ONELLM [2] - - - - - - - - - - - - 47.60
OPM [69] - - - - - - - - - - - - 70.80
PSAC [70] 71.33 56.07 65.68 65.89 72.07 69.02 78.59 54.80 63.11 55.96 61.17 62.75 64.92
PSTP-NET [25] 73.97 65.59 70.90 77.15 77.36 77.26 76.18 73.23 71.80 71.19 69.00 72.57 73.52
QAP [5] - - - - - - - - - - - - -
QWEN2.5-VL [3] 48.60 55.00 51.80 55.28 53.66 54.47 44.00 52.17 63.57 37.84 41.18 47.75 50.14
REFATOMNET [71] - - - - - - - - - - - - -
VALOR [72] - - 68.70 - - 74.20 - - - - - 75.30 78.90
VAST [73] 78.18 67.05 74.06 71.56 76.38 74.00 81.81 64.51 70.80 66.01 63.23 69.54 71.52
VIDEOLLAMA-2 [76] 79.44 52.46 69.64 81.30 82.93 82.11 77.00 63.44 77.69 59.46 64.71 68.98 72.56
VITA [77] 59.81 45.90 54.76 50.41 34.96 42.68 54.00 49.46 46.92 27.93 41.18 43.74 45.44

Table 3: Comparison with state-of-the-art methods on the Music AVQA v2.0 [11] test set. We report
the accuracy for Audio (Counting, Comparative), Visual (Counting, Location), and Audio-Visual
(Existential, Counting, Location, Comparative, Temporal) question types, along with the average
accuracy for Audio, Visual, Audio-Visual, and overall. Methods highlighted with a gray background
incorporate spatial-temporal designs.

Methods Audio-related QA Visual-related QA Audio&Visual-related QA Avg
Count Comp Avg Count Local Avg Exist Count Local Comp Temp Avg

AMUSE [14] 84.76 83.88 84.34 88.15 85.16 86.74 88.30 87.47 78.77 84.41 85.38 85.51 85.16
AVST [10] 81.74 62.11 72.46 79.08 77.64 78.40 72.12 69.03 65.05 63.98 60.57 66.26 71.08
DG-SCT [52] 83.66 62.47 73.64 82.05 82.97 82.48 83.43 72.70 64.65 64.78 67.34 70.38 74.08
LAST-ATT [11] 86.03 62.52 - 84.12 84.01 - 76.21 75.23 68.91 65.60 60.60 - 75.44
LAVISH [58] 84.36 58.57 72.17 83.25 81.46 82.40 73.26 73.45 65.64 64.26 60.82 67.75 72.34
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Table 4: Comparison with state-of-the-art methods on the Music-AVQA-R [23] test set. We report
the accuracy for Audio (Counting, Comparative), Visual (Counting, Location), and Audio-Visual
(Existential, Counting, Location, Comparative, Temporal) question types, along with the average
accuracy for Audio, Visual, Audio-Visual, and overall. Methods highlighted with a gray background
incorporate spatial-temporal designs.

Methods Audio-related QA Visual-related QA Audio&Visual-related QA Avg
Count Comp Avg Count Local Avg Exist Count Local Comp Temp Avg

ATT-BLSTM [85] 60.00 49.55 54.77 32.15 47.97 48.89 54.33 39.46 32.52 51.00 24.45 40.35 40.35
AVSD [33] 50.92 54.20 52.56 35.21 68.11 52.20 64.13 36.68 27.14 58.99 40.83 45.55 45.55
CONVLSTM [45] 55.68 60.22 57.95 35.64 51.66 52.23 72.45 53.18 32.35 57.91 43.33 51.84 51.84
FCNLSTM [45] 51.36 57.96 54.66 33.53 52.96 50.09 71.64 51.98 34.96 57.40 33.90 49.98 49.98
GRU [55] 57.78 58.95 58.36 38.08 57.67 54.17 70.53 43.33 39.70 57.29 35.85 49.34 49.34
HCATTN [86] 51.65 53.12 52.38 32.86 60.09 50.02 63.85 39.77 36.01 54.47 36.54 46.13 46.13
HCRN [57] 54.42 39.81 47.11 32.71 45.34 43.88 53.63 39.67 37.08 35.10 42.30 41.56 41.56
HME [87] 58.28 56.63 57.45 33.71 65.93 54.40 66.12 39.91 40.18 56.89 37.76 48.17 48.17
LAVISH [58] 52.86 62.72 57.79 38.33 67.47 55.83 78.65 41.48 32.38 62.18 44.05 51.75 51.75
LAVIT [59] 47.01 47.86 47.43 31.39 66.35 48.01 37.21 53.02 36.87 43.05 42.17 42.46 42.46
MCAN [64] 67.59 54.49 61.04 45.64 64.37 58.62 59.29 53.86 45.02 51.49 46.35 51.20 51.20
MCCD [23] 75.78 63.43 69.60 61.76 73.43 68.80 76.18 50.55 50.92 62.15 66.95 61.35 61.35
PSAC [70] 54.85 52.77 53.81 37.99 66.83 53.25 53.05 47.14 38.14 48.53 36.46 44.66 44.66

B Representative Examples of Music Performance Scene Types

Figure 4 presents examples for each of the scene types defined in Section 2. These examples further
underscore the performance diversity that Music AVQA methods must accommodate, ranging from
sparse solo stages to densely populated, culturally nuanced ensembles.

Q1: Which clarinet makes the sound last?
A1: right
Q2: Where is the performance?
A2: indoor

(a) Solo Performance.

Q1: Is the first sound coming from the right instrument?
A1: no
Q2: Which instrument makes the sound first?
A2: left

(b) Ensemble of the Same Instrument.

Q1: What is the instrument on the left of cello?
A1: violin
Q2: Is the violin on the left more rhythmic than the cello on the right?
A2: no

(c) Ensemble of Different Instruments.

Q1: Is the performance in the video based on traditional Chinese music?
A1: yes
Q2: How many sounding pipas are there in the ensemble?
A2: nine

(d) Culture-Specific Ensemble.

Figure 4: Representative examples for the four common music performance scene types. (a) Solo
performance: a single musician highlights individual virtuosity on one instrument. (b) Ensemble
of the same instrument: multiple players of identical (or closely related) instruments create timbral
thickness and homogeneous harmony. (c) Ensemble of different instruments: a heterogeneous
group blends distinct tonal colours and enables richer contrapuntal interaction. (d) Culture-specific
ensemble: a traditional instrumental configuration (e.g. guzheng quartet, gamelan group) that captures
the performance idioms of a particular musical culture.

C Representative Examples of Music AVQA Question Types

Table 5 and Figure 5 provide representative examples of the Music AVQA question types. These
illustrate how each type manifests itself across audio, visual and audio-visual modalities, highlighting
the multimodal and fine-grained nature of the task.
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Table 5: Examples of questions in Music AVQA categorized by modality involved and task type.
Modality Task Type Question Answer

Audio Counting Are there acoustic guitar and accordion sound? Yes
Comparative Is the clarinet playing longer than the drum? No

Visual Counting Are there violin and ukulele instruments in the video? Yes
Localization What kind of musical instrument is it? Cello

Audio Visual

Existential Is there a voiceover? Yes
Counting How many instruments are sounding in the video? Three
Localization Is the first sound coming from the middle instrument? Yes
Comparative Is the tuba on the right more rhythmic than the piano? Yes
Temporal Which instrument makes sounds before the violin? Cello

Q: Are there acoustic guitar and accordion sound?
A: yes

(a) Example of Audio Counting QA.

Q: Is the clarinet playing longer than the drum?
A: no

(b) Example of Audio Comparative QA.

Q: Are there violin and ukulele instruments in the video?
A: yes

(c) Example of Visual Counting QA.

Q: What kind of musical instrument is it?
A: cello

(d) Example of Visual Localization QA.

Q: Is there a voiceover?
A: yes

(e) Example of Audio-Visual Existential QA.

Q: How many instruments are sounding in the video?
A: three

(f) Example of Audio-Visual Counting QA.

Q: Is the first sound coming from the middle instrument?
A: yes

(g) Example of Audio-Visual Localization QA.

Q: Is the tuba on the right more rhythmic than the piano?
A: yes

(h) Example of Audio-Visual Comparative QA.

Q: Which instrument makes sounds before the violin?
A: cello

(i) Example of Audio-Visual Temporal QA.

Figure 5: Examples of Music AVQA question types spanning audio, visual, and audio-visual
modalities, including counting, comparison, localization, existential, and temporal QA.
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D How Music AVQA Differs from Traditional Multimodal Tasks

Music AVQA is unique among audio–visual–text (AVT) tasks because it forces the model to disen-
tangle polyphonic, continuous sound streams, bind them to precise visual sources, and reason with
explicit musical knowledge.

Generic Audio–Visual Question Answering. Classic AVQA benchmarks [37, 88, 89, 90] present
short clips with a single audible event (e.g., a dog bark) and ask coarse “what/where/when” questions
that can be answered once the sounding object is localized and its time span identified. The AVQA
dataset itself illustrates this design: most videos contain one foreground sound and minimal polyphony,
so millisecond-level alignment is unnecessary [10, 91]. Music AVQA, in contrast, poses queries such
as “Which violin enters after the flute?”, which requires the model to track multiple overlapping
instruments and reason over precise temporal order, a level of granularity generic AVQA never
targets.

Video Captioning. Datasets like MSR-VTT [92], GIF [93], ActivityNet Captions [94], How2 [95],
and Vatex [96] evaluate whether a system can produce one or two fluent sentences that summarize
the gist of a clip. Moreover, temporal mis-alignment of a few seconds or the omission of background
sounds rarely affects the score. Music AVQA eliminates summarisation entirely and replaces it
with beat-accurate, question-driven reasoning: the model must pinpoint note onsets, match them
to performers, and compare rhythmic or dynamic patterns tasks far beyond the scope of generic
captioning.

Instructional Video QA. TutorialVQA [97], YouCookQA [98] and HowToVQA69M [99] frame
question answering around narrated procedural videos whose audio channel is dominated by speech
that explicitly describes each step. The narration acts as a guide-track and overlapping non-speech
sounds are rare and not queried. Music AVQA removes narration altogether and treats the dense
musical audio as the primary reasoning target, forcing models to infer structure (beats, phrases,
instrument entrances) directly from raw sound rather than from textual guidance.

Audio–Visual Scene-Aware Dialogue. The AVSD dataset [100] and its follow-up [101, 33, 102,
103] train systems to hold multi-turn conversations about short (≈ 10 s) household videos, grounding
answers in coarse scene context while maintaining dialog coherence. Acoustic events are typically
brief (speech, clatter) and alignment at ±1 s suffices. Music AVQA disregards conversational flow
and instead demands hierarchical timing: beats, bars, sections. Every answer depends on tight
audio–video synchrony, not on dialog history management.

Multimodal Sentiment Analysis. Benchmarks such as CMU-MOSI [104] and CMU-MOSEI [105]
fuse text transcripts, facial expression and prosody to predict sentiment or emotion over 5 to 30
second clips. Overlap between speakers or sound sources is noise to suppress, and no explicit source-
binding is required. In Music AVQA overlap is the signal: models must isolate each instrument’s
contribution, bind it to its on-screen performer and reason about their relationships (loudness, order,
count). Other emotion datasets, like IEMOCAP [106], MELD [107], and CH-SIMS [108], use 5–30
s clips, treat overlapping voices as background noise, and label sentiment at the utterance—rather
than source—level.

Cross-Modal Retrieval. Contrastive systems such as CLIP [35] (vision–text), ALIGN [109],
LiT [110], or ImageBind [1] (audio–vision–text) learn global embeddings and judge success by top-k
similarity—minor temporal or spatial errors barely change the score. Music AVQA instead penalises
any mis-alignment: swapping left/right instruments or missing a single beat flips the answer. The
task therefore demands persistent token-level grounding rather than coarse embedding proximity.

Where existing AVT tasks rely on sparse events, speech cues or global embeddings, Music AVQA
alone couples dense polyphonic audio, frame-accurate audio–visual alignment, and music-theoretic
knowledge. It thus sets a much higher bar for multimodal reasoning than traditional benchmarks.
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E Details of Music AVQA Datasets

We summarize the three publicly released Music-AVQA benchmarks and their successive extensions
(§ E.1), then contrasts Music-AVQA with several general-purpose AVQA datasets to underline the
domain-specific challenges posed by musical performance videos (§ E.2).

E.1 Music AVQA Datasets

Table 6 provides a summary of three representative datasets specifically designed for Music Perfor-
mance Audio-Visual Question Answering (Music AVQA) tasks.

Table 6: Evolution and characteristics of Music AVQA datasets: a comparative overview of MUSIC-
AVQA [10], MUSIC-AVQA v2.0 [11], and MUSIC-AVQA-R [23] benchmarks.
Dataset Brief Description

MUSIC-AVQA [10] The MUSIC-AVQA dataset represents a significant contribution to audio-visual
question answering research, comprising 9,288 videos with over 150 hours of
musical performances covering 22 instruments, generating 45,867 question-answer
pairs. The dataset is randomly split into training, validation, and testing sets with
32,087, 4,595, and 9,185 QA pairs respectively, spanning 33 question templates
across 9 question types including existential, location, counting, comparative, and
temporal questions.

MUSIC-AVQA v2.0 [11] The MUSIC-AVQA v2.0 dataset builds upon the original MUSIC-AVQA by ad-
dressing data bias issues, comprising 10,518 videos (9,288 from the original plus
1,230 new videos) with musical performances covering 22 instruments, generat-
ing approximately 54,000 question-answer pairs. The balanced dataset splits into
training, validation, and testing sets with 36,700, 5,250, and 10,819 QA pairs
respectively, spanning 33 question templates across 9 question types. The authors
specifically balance 15 biased templates by ensuring no dominant answers exceed
60% for binary questions or 50% for multi-class questions, particularly enhancing
representation of underrepresented answers in existential, counting, temporal, loca-
tion, and comparative question categories.

MUSIC-AVQA-R [23] The MUSIC-AVQA-R dataset proposed in this paper is an extension of MUSIC-
AVQA specifically designed to evaluate the robustness of audio-visual question
answering models. It expands the original test set through a human-machine collab-
oration mechanism that rephrases each question 25 times, increasing the number of
questions from 9,129 to 211,572, and introduces distribution shifts to categorize
questions into head (common) and tail (rare) samples. Compared to the original
dataset, MUSIC-AVQA-R features a vocabulary size of 465 (five times larger than
MUSIC-AVQA), provides more diverse question formulations while preserving
inherent biases in the training and validation sets, and offers three evaluation met-
rics—head accuracy, tail accuracy, and overall accuracy—enabling researchers to
assess model performance in both in-distribution and out-of-distribution scenarios,
making it the first dataset specifically designed for robustness evaluation in audio-
visual question answering tasks.
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E.2 Key Difference from Other AVQA Datasets

Table 7 contrasts the Music-AVQA dataset [10] with several widely-used AVQA benchmarks [91,
111, 112, 72, 88]. For each dataset, we highlight the most salient divergence from the music-specific
setting, focusing on aspects such as task format, content domain, temporal scope, and the presence or
absence of fine-grained musical reasoning.

Table 7: Other representative benchmarks (AVQA [91], EgoSchema [111], FunQA [112], VALOR-
1M [72], and VGG-Sound [88]) and the key difference each bears with respect to Music-AVQA [10].
Dataset Key Difference

AVQA [91] Builds multiple-choice QA on everyday VGG-Sound clips; questions target generic
activities and causal relations in real-life videos, so it lacks the fine-grained instru-
ment/sound localization and music-theory knowledge required in MUSIC-AVQA.

EgoSchema [111] Uses first-person (Ego4D) footage that is three-minutes long, stressing long-range
temporal reasoning in egocentric daily tasks; audio cues are incidental and the task
is 5-way multiple choice, very different from the short, professionally filmed music
performances and open-ended answers in MUSIC-AVQA.

FunQA [112] Focuses on“surprising” humour/creative/magic clips (4.3 k videos, 312 k QAs) that
test commonsense violations; audio is often background and questions centre on
counter-intuitive visual events, not on synchronised musical notes or instrument
semantics.

VALOR-1M [72] A pre-training corpus (1 M videos) with tri-modal captions meant for retrieval/cap-
tioning; QA supervision is extremely sparse and relies on auto-generated subtitles,
so it serves as a foundation model resource rather than a targeted AVQA evaluation
set like MUSIC-AVQA.

VGG-Sound [88] It is an audio-visual correspondent dataset consisting of short clips of audio sounds
from YouTuBe. And it provides raw audio–visual correspondence but no ques-
tion–answer supervision or fine-grained reasoning labels.
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F Details of Music AVQA Methods with Spatial-Temporal Designs

Table 8 illustrates methods incorporating explicit spatial-temporal design components in detailed.

Table 8: Description of representative methods for spatial-temporal design for Music AVQA.

Paper/Work Brief Description
AMUSE [14] Focuses on music performance scenarios by aligning time segments in

both audio and video streams via a cross-attention paradigm. Exploits
synchronized features (such as beat-level or note-level alignment) to
capture subtle temporal dependencies among instruments in dense music
passages. By integrating rhythmic cues and cross-modal interactions, it is
particularly suited for questions that involve multiple instruments playing
simultaneously or changing their patterns over time.

AVST [10] Proposes a spatio-temporal grounded audio-visual approach that explicitly
localizes sounding objects in each frame while applying a question-guided
temporal attention mechanism. The model grounds audio-visual events
and emphasizes which frames (visual) and which segments (audio) are
most relevant for question answering. By combining localized visual
features and temporal cues, it captures object interactions over time and
can better handle questions involving spatial and temporal reasoning.

CIGN [43] Learns audio-visual class tokens and an Audio-Visual Continual Grouping
module that, at every time-step, pulls together frame-level spectrogram
features and region features into category-aware clusters. A
token-distillation schedule preserves past knowledge while the regrouping
logic tracks objects and sounds through the video’s timeline, giving the
model temporally consistent, cross-modal semantics for spatial-temporal
reasoning.

DCL [49] Introduces a Disentangled Counterfactual Learning framework to handle
physical audio-visual commonsense reasoning tasks. Decomposes video
signals into static (time-invariant) and dynamic (time-varying) factors
using a VAE-based encoder, enabling clearer separation of constant
background features from changing events. Additionally employs a
counterfactual intervention module on the dynamic factors to perform
causal reasoning, helping the model answer “what if” questions related to
temporal and event relationships.

DG-SCT [52] Introduces a Dual-Guided Spatial-Channel-Temporal (DG-SCT) attention
layer that is injected in every frozen audio and visual transformer block.
Audio prompts steer visual tokens (and vice-versa) via bidirectional
attention that highlights salient spatial regions, discriminative feature
channels, and pivotal temporal segments, producing fine-grained
spatio-temporal alignments that boost related tasks.

EEMC [53] Divides audio/video into 1-s slices and fuses them with text through a
Temporal Bi-modal Transformer backed by a cached-memory mechanism
that magnifies sudden changes across time. The resulting multimodal cue
stream then serves as a cross-attention prompt for the segmentation
decoder, enabling precise localisation of objects and events as their spatial
footprints and temporal order evolve.

LAST-ATT [11] Tackles audio-visual question answering with a repeated cross-attention
strategy. Uses Swin-Transformer-v2 for visual frame features and a
specialized Audio Spectrogram Transformer for audio, then merges them
based on the question. By repeatedly “attending” to the most relevant
frames and spectrogram patches, it effectively localizes musical actions
(e.g., a pianist’s keystrokes) over time. This design is well suited for
intricate temporal queries and locating key audio events in dense musical
content.

Continued on next page
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Paper / Work Brief Description
LAVISH [58] Adds a lightweight Latent Audio-Visual HYbrid adapter to every layer of a

frozen ViT. A compact pool of latent tokens acts as a cross-attention
bottleneck, letting audio frames gate visual tokens (and vice-versa) as the
video unfolds, so spatial patches and framewise dynamics are fused early
while keeping the backbone frozen.

LAVIT [59] Targets 360° videos with a transformer that augments each patch by a
quaternion-based spherical coordinate and aligns it with audio via joint
contrastive objectives. The spherical embedding plus an auxiliary
audio-skewness prediction head lets the model reason about where (on the
sphere) and when a sound arises, delivering fine-grained spatial-temporal
grounding beyond normal FOV clips.

LSTTA [60] A parameter-efficient transfer learning approach for audio-visual-language
tasks that adds dedicated adapter modules while freezing large pretrained
backbones. Splits temporal modeling into two scales: a short-term
semantic interaction module (for capturing local correlations such as brief
instrumental flourishes) and a long-term semantic filtering module (for
broader progressions over many frames). This structure helps the model
identify when, how, and for how long different instruments contribute,
achieving a refined spatio-temporal representation.

MAVEN [62] Employs a Multimodal Audio-Visual Epistemic Network that cycles
between audio, video and text logits, using debiasing constraints to keep
modality-specific and fused predictions consistent over time. The cycle
guidance implicitly anchors each question to the correct temporal
segments while suppressing spurious correlations.

MCCD [23] Introduces a Multifaceted Cycle-Collaborative Debiasing objective: KL
penalties enlarge the gap between uni-modal and tri-modal logits at every
timestep, then force the three unimodal paths to agree with each other.
This temporal-cycle training steers attention toward frames (and sounds)
that all modalities truly share, yielding stabler spatial-temporal grounding
under distribution shift.

MEERKAT [67] Employs a two-stage mechanism for fine-grained audio-visual grounding
in space and time. First uses an Audio-Visual Optimal Transport (AVOpT)
module for fine-grained local alignment between audio features and
specific image patches. Next, the Audio-Visual Attention Consistency
Enforcement (AVACE) module refines cross-modal attention maps to
precisely locate audio sources within bounding boxes, enforcing spatial
constraints and ensuring attention is focused on the correct visual objects
that correspond to the audio signal.

PSTP-NET [25] Proposes a Progressive Spatio-Temporal Perception framework for
audio-visual QA. Divides the selection of relevant information into three
modules: (1) the Temporal Segment Selection Module (TSSM) for picking
key time segments pertinent to the question; (2) the Spatial Region
Selection Module (SRSM) to identify essential visual patches within those
segments; and (3) the Audio-guided Visual Attention Module (AVAM) to
align selected visual patches with the audio signals. This stepwise process
helps isolate question-relevant data and reduce interference.

REFATOMNET [71] For referring atomic actions, it runs three streams—visual, text and
location-semantic tokens— and merges them through novel cross-stream
agent-attention blocks. The location-semantic stream provides per-person
bounding-box hints over time, letting the network lock onto the described
individual before classifying frame-level atomic actions, thus tightly
coupling spatial localisation with temporal action cues.

Continued on next page
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Paper / Work Brief Description
VIDEOLLAMA-2 [76] Builds a video-LLM around a Spatial-Temporal Convolution (STC)

connector that first performs per-frame spatial mixing and then
downsamples temporally, giving the language model a compact yet
order-aware token sequence. A jointly-trained audio branch injects
synchronized spectrogram tokens, enabling the model to answer
audio-visual questions that hinge on both where events happen on screen
and when they unfold.

G Details of Existing Music AVQA Methods

• AVMOE [32]: The paper proposes a parameter-efficient transfer learning framework for audio-
visual tasks by dynamically integrating intra-modal and inter-modal information through a mixture
of experts. The approach introduces unimodal adapters to capture within-modality details and
cross-modal adapters to model interactions between audio-visual streams, while a lightweight
modality-agnostic router dynamically allocates expert weights based on input characteristics. By
combining these components, AVMoE adaptively balances modality-specific and cross-modal fea-
tures, addressing challenges like missing modalities or noisy inputs, thereby enhancing robustness
and performance across diverse audio-visual tasks such as AV localization, segmentation, and
question answering without requiring full model fine-tuning.

• AVSD [33]: The paper proposes an end-to-end baseline for audio-visual scene-aware dialog to
enhance virtual assistants by integrating multimodal signals. The method employs an attention
mechanism to differentiate useful signals from distractions, while maintaining spatial features from
video frames (VGG19/I3D-Kinetics) to preserve contextual details and temporally subsampling
frames to improve efficiency. By fusing attended vectors across audio, video, and text modalities,
the approach dynamically focuses on relevant cues during answer generation. This integrated
framework addresses challenges in holistic dialog management, leveraging cross-modal interactions
to outperform prior methods without relying on rigid pipelines, as demonstrated on the audio-visual
scene-aware dataset.

• AVST [10]: The paper proposes a novel approach to Audio-Visual Question Answering (AVQA)
by integrating multimodal understanding and spatio-temporal reasoning in dynamic audio-visual
scenarios. It introduces the MUSIC-AVQA dataset with 45K QA pairs to benchmark the task,
while addressing spatial associations through an attention-based sound source localization module
(AV-Loc) to link sounds with visual sources. Temporal grounding (Q-Temp) is achieved by
using question features to highlight key timestamps, enabling effective encoding of question-
aware audio-visual embeddings. These components are fused to jointly represent spatial and
temporal cues, overcoming challenges in cross-modal reasoning and enhancing performance
in complex audio-visual scenes without relying on single-modality methods. The integrated
framework demonstrates superior scene understanding by leveraging multisensory perception and
fine-grained spatio-temporal analysis.

• AVSIAM [34]: The paper proposes an efficient and scalable audio-visual learning framework using
a shared vision transformer backbone to unify audio and visual processing. The AVSiam model
employs a contrastive audio-visual matching objective with a multi-ratio random masking scheme
to enhance representation robustness while enabling larger batch sizes for effective contrastive
learning. By sharing parameters across modalities, the approach reduces GPU memory footprint
and computational costs compared to dual-backbone methods, while maintaining competitive
performance on classification and retrieval tasks. This integrated design addresses scalability
challenges and modality-handling flexibility without compromising accuracy.

• AMUSE [14]: The paper proposes a framework for music audio-visual question answering that
addresses the unique challenges of dense, continuous audio-visual signals in musical performances.
To exploit multimodal interconnectivity, it employs cross-modal adapters to facilitate early-stage
token interactions between Swin-V2 (video), HTS-Audio (audio), and language transformers, while
annotating rhythm and music sources in datasets to explicitly model musical characteristics. For
temporal alignment, it designs specialized encoders to link musical signals with time dimensions.
This integrated approach overcomes limitations of general-purpose AVQA methods by capturing in-
tricate audio-visual relationships in performances, enhancing accuracy for music-specific questions
through rhythm-aware and temporally grounded representations.
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• ATT-BLSTM [85]: The paper proposes an attention-based bidirectional LSTM network (Att-
BLSTM) for relation classification to capture decisive semantic information without relying on
lexical resources or NLP systems. The model processes raw text through an embedding layer
to generate word vectors, while bidirectional LSTM (BLSTM) layers learn high-level features
by incorporating both past and future context. An attention mechanism then assigns weights
to key words, merging word-level features into a sentence-level vector for classification. By
integrating these components, the approach overcomes limitations of manual feature engineering
and dependency on external tools, effectively identifying critical semantic cues across sentence
positions to improve relation classification performance.

• AUDIO FLAMINGO [29]: The paper proposes Audio Flamingo, a novel audio language model
designed to enhance large language models’ (LLMs) understanding of non-speech sounds and non-
verbal speech through three key innovations. It employs a sliding-window audio feature extractor
to preserve temporal information in variable-length audio, while cross-attention mechanisms
efficiently fuse audio inputs into the LM to reduce computational overhead. The model leverages
a curated heterogeneous dataset and a two-stage training approach (pre-training and supervised
fine-tuning) to balance close-ended and open-ended tasks. Additionally, it integrates in-context
learning (ICL) and retrieval-augmented generation (RAG) through tailored templates and cross-
attention masks, enabling few-shot adaptation without fine-tuning. To support multi-turn dialogues,
the model is fine-tuned on GPT-4-generated datasets with correlated context. By combining these
techniques, Audio Flamingo addresses challenges in audio feature extraction, heterogeneous data
training, task adaptation, and dialogue coherence, achieving state-of-the-art performance across.

• CAT [13]: The paper proposes an enhanced Multimodal Large Language Model (MLLM) to
improve question answering in dynamic audio-visual scenarios by addressing ambiguity and
localization challenges. Key components include a clue aggregator to dynamically capture question-
aware audio-visual features for fine-grained grounding, a mixed training strategy combining
video-text and audio-text pairs with a novel AVinstruct dataset to strengthen cross-modal awareness,
and an AI-assisted Ambiguity-aware Direct Preference Optimization (ADPO) to retrain the model
for precise responses. By integrating these innovations, CAT effectively mitigates ambiguous
outputs and enhances audio-visual reasoning, outperforming existing methods in Audio-Visual
Question Answering (AVQA) tasks.

• CIGN [43]: The paper proposes a novel framework for continual audio-visual learning by disen-
tangling class-aware cross-modal representations to mitigate catastrophic forgetting. It introduces
learnable audio-visual class tokens to continually aggregate category-wise features through the
Audio-Visual Continual Grouping module, while the Audio-Visual Class Tokens Distillation mod-
ule preserves knowledge from previous tasks by aligning old and new token distributions. By
integrating these components, the approach effectively addresses the challenge of mixed audio
semantics and forgetting in sequential tasks, enhancing discriminative feature learning across
modalities without relying on single-modality or rehearsal-based methods. The CIGN framework
demonstrates superior performance in class-incremental audio-visual scenarios through its ability
to maintain compact and disentangled representations.

• COCA [44]: The paper proposes a collaborative causal regularization framework (COCA) to
address multi-shortcut biases in Audio-Visual Question Answering (AVQA) by integrating causal
intervention and dynamic debiasing. The Bias-centered Causal Regularization (BCR) mitigates
specific shortcut biases (Q→G, V&Q→G, A&Q→G) through counterfactual interventions to
disrupt bias-irrelevant causal effects and factual regularization to maintain semantic consistency,
while the Multi-shortcut Collaborative Debiasing (MCD) dynamically adjusts debiasing focus per
sample using an entropy-driven metric to balance bias contributions. By jointly addressing uni-
modal and joint-modal biases through causal introspection and instance-aware adaptation, COCA
enhances multimodal reasoning robustness without over-correcting, achieving state-of-the-art
performance on MUSIC-AVQA.

• CONVLSTM [45]: The paper proposes a novel approach to enhance temporal reasoning in
Audio Question Answering (AQA) by introducing the Diagnostic Audio Question Answering
(DAQA) dataset, which comprises natural sound events and programmatically generated questions
to probe temporal reasoning skills, while adapting visual question answering methods to AQA
reveals their limitations. To address this, the authors develop Multiple Auxiliary Controllers
for Linear Modulation (MALiMo), which extends Feature-wise Linear Modulation (FiLM) by
incorporating an additional auxiliary controller to process subsampled audio features, thereby
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enabling dynamic modulation of convolutional network processing based on both input modalities.
This integrated approach improves relational and temporal reasoning by jointly leveraging audio and
question inputs, overcoming the shortcomings of existing methods in handling complex temporal
dependencies within sound sequences.

• CHATBRIDGE [39]: The paper proposes a multimodal language model that leverages large language
models (LLMs) as a universal interface to bridge diverse modalities through language-paired data.
ChatBridge integrates modality-specific encoders and perceiver modules to project embeddings
into the LLM’s semantic space, enabling cross-modal correlation without requiring all paired data
combinations. The model undergoes two-stage training: first aligning modalities with language
to emergent multimodal abilities, then instruction-finetuning on the MULTIS dataset to enhance
zero-shot task generalization. By using language as a catalyst, ChatBridge addresses the challenge
of limited multimodal paired data while achieving strong performance across text, image, video,
and audio tasks through unified multimodal reasoning and user intent alignment.

• CROSSMAE [46]: The paper proposes a region-aware audio-visual pre-training framework to
enhance cross-modality interaction and fine-grained alignment by extending masked autoencoders.
It introduces Cross-Conditioned Reconstruction to reconstruct input pixels conditioned on cross-
modal Attentive Tokens, while Cross-Embedding Reconstruction leverages Learnable Queries with
positional cues to guide feature reconstruction between modalities, supplemented by contrastive
loss for global alignment. By integrating these components, CrossMAE addresses the limitations
of prior global feature-based methods, enabling effective region-level understanding and improving
performance in both classification and dense prediction tasks without task-specific fine-tuning.

• DCL [49]: The paper proposes a disentangled counterfactual learning approach for physical audio-
visual commonsense reasoning to infer objects’ physics properties from video and audio inputs. The
method decouples videos into static (time-invariant) and dynamic (time-varying) factors through
a disentangled sequential encoder (DSE) using a variational autoencoder and contrastive loss to
maximize mutual information while minimizing cross-factor interference. It further introduces a
counterfactual learning module (CLM) to model physical knowledge relationships among objects
by applying counterfactual interventions as confounders to enhance causal reasoning. By inte-
grating DSE’s disentangled representations with CLM’s causal learning, the approach effectively
addresses challenges in extracting implicit physical knowledge from multi-modal data, improving
reasoning explainability and performance without relying on mixed feature representations.

• DG-SCT [52]: The paper proposes a novel Dual-Guided Spatial-Channel-Temporal (DG-SCT)
attention mechanism to enhance large pre-trained models for audio-visual tasks by dynamically
adjusting feature extraction through cross-modal guidance. The DG-SCT mechanism leverages
audio and visual modalities as soft prompts to adaptively refine features across spatial, channel,
and temporal dimensions, while preserving frozen pre-trained parameters. By integrating trainable
cross-modal interaction layers into encoders, the approach emphasizes task-relevant information in
each modality, addressing limitations of single-modality pre-training. This bidirectional prompting
enables fine-grained feature fusion, improving performance on downstream tasks like AVE, AVVP,
AVS, and AVQA without full retraining, while also excelling in few-shot and zero-shot scenarios.

• EEMC [53]: The paper proposes a novel task called Reference Audio-Visual Segmentation (Ref-
AVS) to segment visual objects using expressions enriched with multimodal audio-visual cues,
addressing the limitations of unimodal approaches. It introduces the Ref-AVS benchmark with pixel-
level annotations and diverse multimodal-cue expressions to enable training and evaluation, while
an end-to-end framework leverages a crossmodal transformer to process and integrate multimodal
cues for precise segmentation. By simultaneously utilizing audio and visual descriptions in natural
language, the approach overcomes challenges in locating objects in dynamic audio-visual scenes,
enhancing segmentation accuracy in complex real-world scenarios without relying on manual mask
annotations or single-modality references.

• FCNLSTM [45]: The paper proposes a novel approach to enhance temporal reasoning in Audio
Question Answering (AQA) by introducing the Diagnostic Audio Question Answering (DAQA)
dataset, which comprises natural sound events and programmatically generated questions to
probe temporal reasoning skills. While adapting existing visual question answering methods
to AQA reveals their limitations in temporal reasoning, the authors develop Multiple Auxiliary
Controllers for Linear Modulation (MALiMo) to extend Feature-wise Linear Modulation (FiLM)
by incorporating an additional auxiliary controller to process subsampled audio features, thereby
enabling dynamic modulation of convolutional network processing based on both principal and
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supplementary inputs. This integrated approach addresses the challenge of in-depth temporal
reasoning by facilitating relational and temporal analysis, leading to improved performance on
DAQA without relying on spatial reasoning or static inputs.

• GPT-4O [4]: The paper proposes GPT-4o, an autoregressive omni model designed to process any
combination of text, audio, image, and video inputs while generating text, audio, or image outputs
through end-to-end training across modalities. By integrating Web Data, Code and Math, and
Multimodal Data during pre-training, the model learns diverse reasoning skills and multimodal
interpretation, while post-training alignment and red-teaming mitigate risks such as bias and harmful
content. This unified approach enhances real-time responsiveness, multilingual performance, and
multimodal understanding while addressing safety concerns through layered mitigations and
external evaluations.

• GRU [55]: The paper proposes a free-form, open-ended Visual Question Answering (VQA) task
to generate natural language answers from images and questions, mirroring real-world scenarios
like assisting the visually impaired. The approach leverages a large dataset (0.25M images, 0.76M
questions, 10M answers) combining real images from MS COCO and abstract scenes to enable both
low-level vision and high-level reasoning. By supporting diverse question types (e.g., fine-grained
recognition, commonsense reasoning) and offering automatic evaluation through open-ended or
multiple-choice formats, the framework addresses the need for detailed image understanding and
multi-modal knowledge integration, advancing AI-complete challenges beyond generic captioning.

• HCATTN [86]: The paper proposes a hierarchical co-attention model for Visual Question Answer-
ing (VQA) that jointly reasons about image and question attention to improve answer accuracy.
It introduces a co-attention mechanism to simultaneously perform question-guided visual atten-
tion (to identify relevant image regions) and image-guided question attention (to focus on key
words), while employing a hierarchical question representation through word-level embeddings,
phrase-level 1D CNNs (to capture n-gram features), and question-level LSTMs (to encode con-
textual meaning). By recursively combining co-attended features across these levels, the model
addresses challenges like linguistic variation and multi-modal alignment, enhancing robustness and
fine-grained understanding for VQA tasks.

• HCRN [57]: The paper proposes a general-purpose neural unit for video question answering
that enables hierarchical relational reasoning and multimodal fusion. The Conditional Relation
Network (CRN) processes input object arrays through sparse high-order relations while modulating
encodings with contextual features, allowing flexible replication and stacking into Hierarchical
CRNs (HCRN). The architecture integrates appearance features with clip motion as initial context,
then progressively incorporates linguistic context and video-level motion through layered CRNs to
enable multi-step reasoning. By hierarchically combining localized clip relations with global video
and question contexts, HCRN addresses challenges of modeling distant temporal dependencies and
heterogeneous modalities in VideoQA, demonstrating robust performance across diverse question
types requiring appearance, motion, and temporal reasoning.

• HME [87]: The paper proposes a novel VideoQA framework that integrates heterogeneous memory
and multimodal attention to enhance video-question reasoning. It introduces a heterogeneous
memory module to jointly learn global context from appearance and motion features through
synchronized attention, while a redesigned question memory captures complex semantics and
highlights queried subjects by storing global contexts. These components interact through a
multimodal fusion layer that aligns visual and textual hints via self-updated attention, enabling
multi-step reasoning. By unifying feature integration with attention learning and maintaining global
context throughout, the approach addresses challenges of spatiotemporal alignment and complex
question semantics, improving VideoQA performance without separating feature and attention
steps.

• LAST-ATT [11]: The paper proposes a method to address data bias in audio-visual question
answering (AVQA) by constructing a balanced dataset and introducing an enhanced multimodal
model. It identifies skewed answer distributions in the MUSIC-AVQA dataset and rectifies them by
collecting complementary videos and questions to ensure uniform answer spread, particularly for
binary questions, resulting in the MUSIC-AVQA v2.0 benchmark. The baseline model strengthens
audio-visual-text interrelations through a pretrained Audio-Spectrogram-Transformer (AST) branch
for audio grounding and cross-modal pixel-wise attention to align audio and visual spatial maps.
By integrating these components, the approach mitigates modality neglect and improves reasoning
across vision, audio, and language, establishing a robust foundation for unbiased AVQA evaluation.
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• LAVIT [59]: The paper proposes a novel benchmark for grounded audio-visual question answering
on 360° videos to address spherical spatial reasoning and audio-visual relationships. It introduces
the Pano-AVQA dataset with 51.7K QA pairs, featuring bounding-box grounding for two task types:
spherical spatial relation QAs to assess relative object positioning on a sphere, and audio-visual
relation QAs to link sounds with visual sources. Through quaternion-based spatial embeddings
and multimodal training objectives, the framework integrates panoramic audio-visual cues while
addressing challenges like spherical distortion and diverse sound localization. This holistic approach
enhances semantic understanding of omnidirectional environments without relying on predefined
fields of view.

• LAVISH [58]: The paper proposes adapting frozen vision transformers (ViTs) pretrained on visual
data to audio-visual tasks without finetuning their original parameters. This is achieved through
a latent audio-visual hybrid (LAVISH) adapter, which injects trainable parameters into each ViT
layer to enable audio specialization and cross-modal fusion. The LAVISH adapter employs latent
tokens to compress modality-specific information, reducing the quadratic cost of standard cross-
attention while facilitating bidirectional audio-visual interaction. By integrating these components,
the approach addresses the inefficiency of modality-specific models and costly audio pretraining,
enabling frozen ViTs to leverage shared representations for enhanced audio-visual understanding
without external encoders or extensive parameter updates.

• LSTTA [60]: The paper proposes a parameter-efficient transfer learning approach for audio-
visual-language tasks by introducing the Long Short-Term Trimodal Adapter (LSTTA), which
integrates pre-trained unimodal/bimodal models without full fine-tuning. LSTTA employs a long-
term semantic filtering module to suppress redundant video frames by characterizing temporal
importance, while the short-term semantic interaction module models local cross-modal alignments
through two sub-modules (AL2V and VL2A) to facilitate fine-grained information transfer. By
combining these complementary mechanisms, LSTTA addresses the challenges of uneven global
semantics and unannotated local correspondences in trimodal learning, enhancing performance on
tasks like Music-AVQA and CMU-MOSEI without requiring large-scale trimodal pretraining.

• MAVEN [62]: The paper proposes a robust multimodal reasoning framework for Audio-Visual
Question Answering (AVQA) to address dataset biases and enhance model robustness. It introduces
FortisAVQA, a novel dataset constructed by rephrasing test questions to diversify linguistic forms
and introducing distribution shifts to evaluate performance across frequent and rare question
types. The Multimodal Audio-Visual Epistemic Network (MAVEN) employs a Multifaceted
Cycle Collaborative Debias (MCCD) strategy to mitigate bias learning by enlarging distribution
differences between unimodal and multimodal logits through KL divergence optimization while
using cycle guidance to align unimodal logit distributions. This integrated approach reduces reliance
on spurious correlations in individual modalities, improving generalization across in-distribution
and out-of-distribution scenarios without requiring balanced training data.

• MCAN [64]: The paper proposes a deep Modular Co-Attention Network (MCAN) to enhance
visual question answering (VQA) by jointly modeling intra- and inter-modal interactions through
a modular architecture. The framework integrates Self-Attention (SA) units to capture dense
word-to-word and region-to-region relationships within questions and images, while Guided-
Attention (GA) units model word-to-region cross-modal dependencies. By cascading Modular
Co-Attention (MCA) layers composed of SA and GA units, MCAN enables deep reasoning while
addressing the limitations of shallow co-attention models. This integrated approach improves
fine-grained semantic understanding by simultaneously refining self-attention within modalities and
guided-attention across modalities, leading to more accurate visual-textual alignment and robust
performance on complex VQA tasks.

• MCCD [23]: The paper proposes a robust framework for Audio-Visual Question Answering
(AVQA) to address dataset biases and enhance model robustness. It introduces MUSIC-AVQA-R,
a novel dataset crafted by rephrasing test questions and introducing distribution shifts to evaluate
performance on both frequent and rare samples, while the Multifaceted Cycle Collaborative De-
biasing (MCCD) strategy mitigates bias learning by enlarging distribution differences between
uni-modal and multi-modal logits and employing cycle guidance to align uni-modal distributions.
This integrated approach ensures diverse question evaluation and reduces bias dependency, improv-
ing generalization across in- and out-of-distribution scenarios without relying on balanced training
data.
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• MEERKAT [67]: The paper proposes an audio-visual LLM for fine-grained spatio-temporal ground-
ing in images and audio, addressing the limitations of existing MLLMs in handling fine-grained
tasks. It introduces a modality alignment module based on optimal transport to learn cross-modal
patch alignment in a weakly-supervised manner, while a cross-attention module enforces audio-
visual consistency to improve joint representation learning. These components are integrated
through the AVFIT dataset (3M instruction samples) and MeerkatBench, a unified benchmark for
five tasks, enabling the model to tackle challenges like disparate task formats and lack of large-scale
training data. The approach enhances performance by unifying spatial and temporal grounding
capabilities, achieving state-of-the-art results across diverse audio-visual tasks.

• OPM [69]: The paper proposes an adaptive modulation approach to address imbalanced multimodal
learning by dynamically balancing uni-modal optimization during joint training. It introduces On-
the-fly Prediction Modulation (OPM) to weaken dominant modality influence in the feed-forward
stage by probabilistically dropping its features, while On-the-fly Gradient Modulation (OGM)
mitigates gradient dominance in back-propagation through adaptive noise injection. By monitoring
inter-modal discriminative discrepancies, these strategies jointly alleviate under-optimization of
weaker modalities while preserving dominant modality contributions. The integrated framework
enhances multimodal representation learning across diverse tasks by ensuring balanced feature
optimization without additional training overhead, as validated through extensive experiments on
audio-visual benchmarks.

• ONELLM [2]: The paper proposes a unified framework to align multiple modalities with lan-
guage using a shared architecture, eliminating the need for modality-specific encoders. It in-
troduces lightweight modality tokenizers to convert input signals into tokens, while a universal
encoder (CLIP-ViT) extracts cross-modal features and a universal projection module (UPM) dy-
namically routes mixed projection experts to map diverse modalities into the LLM’s embedding
space. Through progressive alignment and a curated multimodal instruction dataset spanning
eight modalities, the integrated approach overcomes scalability limitations of prior MLLMs by
unifying encoding and projection, enabling flexible modality expansion and enhanced multimodal
understanding without architectural redundancy.

• PSAC [70]: The paper proposes a novel self-attention-based architecture for video question
answering (VQA) to overcome the limitations of RNNs in modeling long-range dependencies and
parallel processing. It introduces Positional Self-Attention (PSA) to capture global dependencies in
video and question sequences by attending to all positions while incorporating absolute positional
encodings to preserve temporal/spatial information. Through Video-based PSA (VPSA) and
Question-based PSA (QPSA), the model encodes video frames and textual questions in parallel. A
Video-Question Co-Attention (VQ-Co) block then simultaneously attends to relevant visual and
textual features via bidirectional attention, enhancing cross-modal alignment. By integrating PSA
with co-attention, the framework efficiently models complex video-question interactions, addressing
challenges in sequential data processing and multimodal fusion while improving accuracy and
computational efficiency.

• PSTP-NET [25]: The paper proposes a progressive spatio-temporal perception framework for
audio-visual question answering (AVQA) to address challenges in complex multi-modal video
understanding. The Temporal Segment Selection Module (TSSM) identifies relevant video segments
to reduce redundancy, while the Spatial Region Selection Module (SRSM) locates question-aware
visual patches within selected segments to enhance spatial reasoning. The Audio-guided Visual
Attention Module (AVAM) models audio-visual associations by aligning sound features with visual
patches. By progressively integrating these components, the approach effectively filters irrelevant
content, localizes key spatio-temporal regions, and strengthens cross-modal interactions, leading to
improved scene understanding and question answering performance.

• QAP [5]: The paper proposes a parameter-efficient multimodal language model learning strategy
that bridges modalities through query-based prompts and lightweight resampling. The core innova-
tion involves Querying Prompts (QP) to simultaneously extract modality information and interact
with text, while Text-Conditioned Resamplers (TCR) adaptively inject text-relevant multimodal
features into frozen language model layers. By integrating QP and TCR, the approach efficiently
compresses modality inputs and leverages the model’s inherent fusion capabilities, addressing com-
putational inefficiency and redundancy in traditional projection-based methods while outperforming
existing techniques across multiple multimodal tasks with minimal trainable parameters.
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• QWEN2.5-VL [3]: The paper proposes Qwen2.5-VL, a vision-language model advancing mul-
timodal understanding through enhanced visual recognition, object localization, and document
parsing while addressing computational and contextual challenges. Key innovations include dy-
namic resolution processing to handle varying image sizes and video durations, absolute time
encoding to improve temporal dynamics perception, and a native dynamic-resolution ViT with Win-
dow Attention to reduce overhead while preserving resolution. By integrating these components,
the model achieves robust performance in fine-grained visual tasks, long-video comprehension,
and real-world agentic applications without task-specific fine-tuning, while maintaining strong
linguistic capabilities inherited from Qwen2.5 LLM. The approach overcomes bottlenecks in
computational complexity and inconsistent sequence-length performance, enabling precise spatial-
temporal reasoning and cross-domain generalization.

• REFATOMNET [71]: The paper proposes a novel approach for Referring Atomic Video Action
Recognition (RAVAR) to identify atomic actions of a specific person guided by textual descrip-
tions and video data, addressing limitations in traditional action recognition. Key components
include RefAtomNet, which employs a multi-stream architecture connecting video, text, and
location-semantic streams to interpret referring expressions and localize target individuals, while
cross-stream agent attention and token fusion enhance relevance filtering across modalities. This
integrated approach tackles challenges like irrelevant visual distractions and enables end-to-end
action recognition for referred individuals, outperforming existing methods in RAVAR without
requiring manual pre-processing. The RefAVA dataset with 36,630 annotated instances supports
this task.

• VALOR [72]: The paper proposes a Vision-Audio-Language Omni-Perception pretraining model
(VALOR) to jointly model tri-modality interactions for understanding and generation tasks. It
employs three single-modality encoders to process vision, audio, and language separately, while
a multimodal decoder enables conditional text generation through two pretext tasks: Multimodal
Grouping Alignment (MGA) projects modalities into a shared space to align vision-language, audio-
language, and audiovisual-language groups via contrastive learning, and Multimodal Grouping
Captioning (MGC) reconstructs masked text tokens conditioned on visual, auditory, or combined
inputs to enhance generative capabilities. By integrating these components with a large-scale
human-annotated dataset (VALOR-1M), the approach addresses the limitations of existing bimodal
systems, enabling comprehensive cross-modal alignment and flexible text generation across diverse
modality combinations for downstream tasks like retrieval, captioning, and question answering.

• VAST [73]: The paper proposes an omni-modality foundation model to enhance video-text cross-
modality learning by integrating vision, audio, and subtitle information. It introduces VAST-27M,
a large-scale dataset automatically generated through a two-stage pipeline: first training separate
vision and audio captioners to produce single-modality descriptions, then employing an LLM to syn-
thesize these with subtitles into omni-modality captions. The VAST model leverages three modality
encoders and cross-attention-based text fusion, trained with objectives (OM-VCC/VCM/VCG) to
unify multi-modal understanding. This approach addresses the lack of comprehensive video-text
corpora by automating caption generation, enabling joint modeling of complementary modalities
to improve performance on diverse downstream tasks like retrieval, captioning, and QA without
manual annotation costs.

• VITA [77]: The paper proposes VITA, an open-source Multimodal Large Language Model
(MLLM) capable of simultaneous processing and interactive analysis across video, image, text,
and audio modalities. Starting with Mixtral 8×7B as a language foundation, it expands Chinese
vocabulary through bilingual instruction tuning to enhance multilingual proficiency, while endowing
visual and audio capabilities via two-stage multi-task learning for multimodal alignment and
instruction tuning. To improve interaction, VITA introduces state tokens to distinguish input queries
for non-awakening interaction and employs a duplex pipeline deployment scheme, where one
model generates responses while another monitors environmental inputs, enabling audio interrupt
interaction. This integrated approach addresses the lack of open-source models with unified
multimodal processing and natural interaction, advancing seamless multimodal understanding and
human-computer engagement without relying on wake-up words or sequential query handling.

• VIDEOLLAMA-2 [76]: The paper proposes VideoLLaMA 2, a Video Large Language Model
designed to enhance spatial-temporal modeling and audio understanding in multimodal video
tasks. It introduces a Spatial-Temporal Convolution (STC) connector to capture intricate spatial
and temporal dynamics in video data, while integrating an Audio Branch through joint training to
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incorporate audio cues for richer multimodal understanding. By combining these components, the
model addresses challenges in processing temporal dynamics and audio-visual synchronization,
improving performance in video question answering and captioning tasks without compromising
contextual integrity or processing efficiency.
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