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Abstract

Multi-hop reasoning over long contexts re-
mains challenging, as it requires integrating rel-
evant contexts scattered across distant sources
while resisting semantic drift and noise from
distracting content. While retrieval-augmented
generation (RAG) has emerged as the prevail-
ing solution, most RAG approaches encode and
store context in monolithic memory represen-
tations, resulting in noisy retrieval and brittle
reasoning. To overcome these limitations, we
introduce TAG (Tailoring Memory Granularity),
a framework that prestructures memory into
diverse granularities and employs a reward-
guided navigator to adaptively compose hybrid
memory tailored to each query. The navigator
is trained with a multi-objective Bradley—Terry
loss that learns the relative utility of differ-
ent memory types, enabling dynamic routing
across granularities. This design allows RAG
systems to balance fine-grained detail with
high-level abstraction, yielding more reliable
reasoning. Extensive experiments on long-
context multi-hop question answering (QA)
benchmarks show that TAG achieves state-of-
the-art performance. With only 0.033% addi-
tional parameters, it remains lightweight, high-
lighting its practicality as a scalable and ef-
fective solution for enhancing language model
agents in complex, real-world scenarios.

1 Introduction

Large Language Models (LLMs) are increasingly
augmented with agentic capabilities and personas,
enabling them to interact with environments, per-
form planning and reasoning, utilize tools, and au-
tonomously accomplish complex goals via super-
vised finetuning and reinforcement learning (Wang
et al., 2024c¢; Xi et al., 2025; Yuan et al., 2025b,a;
Bi et al., 2025; Tian et al., 2025; Zhou et al., 2025b;
Li et al., 2024a; Li and Deng, 2023). A corner-
stone of such sophisticated agency is the memory

Corresponding authors.

Question: Who costarred in 1935 American drama film
Les Misérables with the husband of Elsa Lanchester?
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Figure 1: Hybrid memory system of LLM-based agents
offers rich, granular text information.

module, which controls how agents process, store,
and retrieve past information to inform future ac-
tions (Zhang et al., 2024; Lee et al., 2024; Diao
et al., 2025c¢; Hu et al., 2026). This is particularly
critical for long-context reasoning tasks, where rel-
evant information may be distributed across vast
textual passages, demanding nuanced understand-
ing at multiple memory granularities—from fine-
grained factual details to global semantics (Li et al.,
2024b; Lee et al., 2024).

Previous LLM-based agents often rely on sin-
gular memory structure, typically text chunks (Hu
et al., 2024; Packer et al., 2023). While straight-
forward, such uni-modal memory can lead to
inefficient retrieval and the inclusion of noisy
or irrelevant information in the agent’s context
window, potentially impairing reasoning, a
phenomenon referred to as being "lost in the
middle" (Liu et al., 2023; Wu et al., 2025).

Cognitive Fit Theory, inspired by cognitive sci-
ence (Vessey, 1991; Umanath and Vessey, 1994),
suggests that human cognitive processes are op-
timized when the representation of information
aligns with task requirements. For example, while



segmented text maintains local context, knowledge
triples prove superior for tasks that necessitate
clearly defined relationships (Anokhin et al., 2024).
As a result, recent progress has utilized LLMs to
create a range of knowledge structures (Li et al.,
2023; Jain et al., 2024; Li et al., 2024d) and to
implement a hybrid memory system (Zeng et al.,
2024), aiming to find the best structural representa-
tions for a variety of tasks in complex real-world
scenarios.

However, a critical challenge remains: different
memory structures inherently convey different
granularities of information, and existing ap-
proaches often fail to adaptively leverage the
optimal blend of these varied structural representa-
tions based on the specific demands of an incoming
query, as shown in Figure 1. In this work, we
introduce TAG, a novel framework that integrates
multiple, structurally diverse memory types and
employs a reward-guided retrieval mechanism to
adaptively build the optimal memory composition
for each query. TAG constructs hybrid memory
with stratified information granularity, including
document chunks for local contextual details,
atomic facts for precise factual units, knowledge
triples for explicit entity relationships, and
summaries for abstractive understanding.

The central component of TAG is a memory
router module, based on a multi-objective reward
model, which predicts the relative preference of
each memory structure for a given query. To
achieve this, we propose a multi-object Bradley-
Terry loss, enabling the reward model to learn a
memory blending coefficient that guides a weighted
retrieval strategy. This allows our LLM agent to
dynamically assemble a granularly balanced and
task-relevant hybrid memory, enhancing retrieval-
augmented generation. We evaluate TAG on three
long-context multi-hop reasoning benchmarks. Our
method achieves state-of-the-art performance and
outperforms the uni-structure remarkably, by up
to 7% on the HotPotQA benchmark. Additionally,
our lightweight framework only adds 0.033% addi-
tional parameters, highlighting its practicality as a
scalable and effective solution for enhancing LLM
agents in complex, real-world scenarios.

2 Related Work

RAG for long-context multi-hop reasoning.
Multi-hop QA over long contexts is com-
monly tackled with retrieval-augmented genera-

tion (RAG), but performance remains brittle due to
dispersed evidence and distractors. Prior work im-
proves robustness via iterative retrieval and reason-
ing—e.g., question decomposition and interleaving
retrieval with intermediate reasoning steps (Press
et al., 2023; Trivedi et al., 2023)—or via better
indexing and retrieval units under long-context
constraints, including hierarchical abstractions and
coarse-to-fine retrieval (Lewis et al., 2020a; Zhao
et al., 2024). Analyses further show that retrieval
effectiveness is highly sensitive to granularity, with
no single unit universally optimal (Chen et al.,
2024).

Structured and hybrid memory for LLM agents.
LLM agents typically store experiences as raw
chunks in a vector store (Lewis et al., 2020b; Packer
et al., 2023), which can introduce noise and exacer-
bate “lost-in-the-middle” failures (Liu et al., 2023).
To increase information density and controllability,
recent systems construct semi-structured memories
(e.g., summaries, atomic facts) or structured mem-
ories (e.g., triples/graphs) (Xu et al., 2023; Min
et al., 2023; Li et al., 2024b; Anokhin et al., 2024;
Baek et al., 2023; Sun et al., 2024). Hybrid mem-
ory systems combine multiple forms to trade off
precision and context (Zeng et al., 2024).

Existing methods largely fix the retrieval unit
or operate within a single representation at a time
(even when hierarchical), and hybrid systems often
mix structures without query-adaptive allocation.
We instead study per-query composition across
heterogeneous memory granularities, training a
lightweight reward-guided router to dynamically al-
locate retrieval budget over multiple memory struc-
tures. See Appendix A for a broader discussion.

3 Method

Figure 2 illustrates the overview of our method.
Section 3.1 describes the generation of each mem-
ory structure. Section 3.2 explains the pipeline of
our augmented retrieval process.

3.1 Memory Generation

Structural memory generation equips agents with
the ability to transform raw textual documents D,
into structured representations M, thereby enhanc-
ing the storage, retrieval, and reasoning capabilities
of LLM-based agents. Following prior work (Zeng
et al., 2024), we build our memory system using
four representative structures with increasing levels
of abstraction and granularity: knowledge triples
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Figure 2: Overview of the augmented hybrid memory retrieval via reward-guided structuring. For each question
and its corresponding document, raw information is transformed into various structural memories. The router then
determines the optimal allocation strategy for the hybrid memory and orchestrates the retrieval of the most relevant
memories to support precise and contextually enriched responses.

(T5), atomic facts (A,), summaries (5;), and docu-
ment chunks (Cy).

Knowledge Triples 7, encodes semantic rela-
tionships between entities in the form (h,r,t),
where h, r, and t denote the head, relation, and
tail, respectively. We follow prior work (Anokhin
et al., 2024; Fang et al., 2024; Zeng et al., 2024) to
generate such triples using a prompt-conditioned
LLM. For example, from a document mention-
ing Bologna Process, we may extract: (Bologna
Process, under, Lisbon Recognition Convention),
or (Bologna Process, named after, University of
Bologna). The prompt for generating triples is
shown in Figure 6a.

Atomic Facts A, are concise, standalone declar-
ative statements that convey a single factual asser-
tion, or verifiable pieces of information extracted
from the source document D, (Min et al., 2023;
Li et al., 2024b). Each atomic fact is designed to
represent a minimal unit of knowledge, facilitating
precise retrieval and reasoning. For instance, from
a document discussing the Bologna Process, we
might extract: The Bologna Process was opened to
other countries in the European Cultural Conven-
tion of the Council of Europe. Unlike knowledge
triples, which strictly represent explicit semantic
relationships between entities, atomic facts can ex-
press more abstract content, such as implicit rela-
tionships and conditions that are difficult to suc-
cinctly encode in a triple structure. The prompt for
generating atomic facts is shown in Figure 7.

Summaries S, are concise, high-level represen-
tations of documents D, capturing essential in-
formation while omitting extraneous details. This
approach ensures that the summaries retain both
global semantics and critical details pertinent to
downstream tasks (Lee et al., 2024). The prompt

for generating summaries is shown in Figure 6b.

Chunks (), denote contiguous segments of text
derived from document D, designed to preserve
local coherence and facilitate efficient processing.
Following typical chunking methods that employ
fixed-length segmentation (Gao et al., 2023; Zeng
et al., 2024; Dong et al., 2023), the chunked mem-
ory is represented as Cy(D,) = {c1,¢2,..., ¢},
where each c; is a chunk with at most L length.

3.2 Augmented Memory Composition via
Reward-Guided Retrieval

After building up the hybrid memory for a given
question g, we propose an augmented retrieval
mechanism that adaptively fuses multiple struc-
tural memories. This process is guided by a multi-
objective reward model trained to infer an optimal
allocation for each memory type. The inference
pipeline is illustrated in Figure 2. The design and
training of the reward model are detailed in Sec-
tion 4. Specifically, for a given question ¢ associ-
ated with corresponding hybrid memory, we denote
the full hybrid memory M, as:

M, = {quTququ}- ey

The reward model R maps the input question ¢ to
a 4-dimensional weight vector:

wy = R(q) = [we, wr, wa, ws], (2)

where each w; denotes the importance weight of
the corresponding memory type (Chunks, Triples,
Atomic facts, and Summaries, respectively). To
ensure these weights reflect probabilities summing
to 1, we apply a softmax normalization:

- exp(w; /T) 3)

' zje{C,T,A,S} exp(w;/7) ’




where i € {C,T, A, S} and 7 denotes a tempera-
ture parameter adjusting the distribution sharpness.
Next, we quantize these normalized weights into
discrete retrieval counts for the memory sets. Given
a desired total retrieval budget K, we compute the
quantized counts as:

n; = |w)- K|, foreachiec C,T,A,S, (4

where |- | denotes the floor function. Typically, this
results in Zl n; < K, leaving a small remainder
R = K — ), n;. To allocate this remainder, we
distribute the leftover retrieval counts to memory
types based on the largest fractional components
from the product w; - K. During retrieval:

Mq = Upmenm,Retrieve(q, M,npr),  (5)

where njys denotes the quantized retrieval count
for memory type M. The retrieval function
Retrieve(q, M, nys) samples the top-nys items
from each memory type based on semantic sim-
ilarity to g. Specifically, we utilize Qwen series
embedding models for semantic retrieval (details
in Appendix C).

4 Navigator Training

A central component of the TAG framework is the
memory navigator, which determines the optimal
composition of memory structures for each input
query. However, the absence of annotated datasets
specifying preferred memory allocations presents
a significant challenge for supervised training. To
overcome this, we propose a weakly supervised
training pipeline that enables the learning of a ro-
bust multi-objective reward model navigator.

4.1 Data Construction

Currently, no benchmark datasets explicitly anno-
tate optimal memory-structure allocations, which
limits direct supervision for training models to
learn query-specific memory selection strategies.
Inspired by prior work that leverages large lan-
guage models as evaluative judges (Li et al., 2024d;
Ma et al., 2025), we adopt an in-context learning
framework (Shi et al., 2024; He et al., 2025; Li
et al., 2025e,d) to approximate such supervision.
Specifically, for each query, we prompt the model
to infer the most suitable memory structure from
four candidate types, conditioned on the query and
a minimal set of relevant document content. We
then refine and balance the dataset by selecting
200 examples for each memory structure across all

datasets. Each example is labeled with a preferred
structure t,,, while other structures are marked as
less relevant, resulting in a multi-pairwise prefer-
ence sample:

Dsynthetic = {q(k), C(k) ; tq(llf)a }]kvzla (6)

where ¢(¥) denotes the query, C'¥) is the associ-
ated document content, and tz(f )

structure types, respectively.

are the preferred

4.2 Model Architecture

Drawing inspiration from typical multi-objective
reward model design (Wang et al., 2024b, 2023b,
2024a; Zhou et al., 2025¢), we leverage a pre-
trained decoder-based LLLM as the feature extractor.
To repurpose this backbone for preference model-
ing, we freeze the original language modeling head
and instead append a lightweight regression head
tailored to the memory structure ranking task. To
enable efficient fine-tuning, we adopt Parameter-
Efficient Fine-Tuning (PEFT) via Low-Rank Adap-
tation (LoRA) (Hu et al., 2022; Qing et al., 2024;
Zhang et al., 2025b,a; Wang et al., 2025b), which
introduces trainable low-rank updates into selected
layers of the LLM while keeping the majority of
parameters frozen. This design allows the router
to adapt quickly to the ranking task with minimal
computational overhead. During the training phase
of the router, only the LoRA parameters and the
regression head are updated; the pre-trained LLM
backbone remains frozen. For inference, the pro-
cess involves two stages: first, the LoRA adapters
and the regression head are activated to predict
the memory allocation weights based on the in-
put query (concatenated with specific instructions
and system prompts tailored for weight prediction).
Subsequently, these components are deactivated,
and the LLM agent’s original output head is used
for generating the final answer, now informed by
the retrieved memory. The input query is again
concatenated with different instructions and sys-
tem prompts suitable for answer generation.

4.3 Bradley-Terry Loss for Multi-Score
Regression

The reward model R maps an input query to a
four-dimensional score vector s = [s1, 2, S3, S4],
where each component corresponds to the predicted
utility of one memory type. Unlike traditional clas-
sification objectives, we aim to learn relative con-
tributions, as multiple memory types may offer



Memory Structure HotPotQA 2WikiQA MuSiQue Average
EM F1 EM F1 EM F1 EM F1
Uni-memory
Chunks 52.50 69.12 3550 47.44 1650 33.02 34.83 49.86
Triples 29.00 44.89 29.00 39.85 9.00 19.76 22.33 3483
Atomic Facts 37.50 50.05 27.00 38.14 12.50 23.61 25.67 37.27
Summaries 51.50 68.88 38.50 48.25 22.00 36.39 37.33 51.17
Hybrid-memory
Random 53.00 71.17 37.00 48.66 20.50 36.66 36.83 52.16
Best@1 47.00 61.07 3450 4551 1450 29.09 32.00 4522
Best@2 48.00 6542 36.00 47.01 1550 30.88 33.83 47.77
Best@3 53.00 70.28 35.00 46.00 15.00 30.12 33.00 46.47
Equal 58.00 73.61 40.00 51.01 1650 32.66 38.83 52.43
TAG 58.00 75.73 40.50 51.22 2250 37.92 40.33 54.96

Table 1: Performance of single (uni) and hybrid memory structures using single-step retrieval across three datasets.
Random refers to randomly retrieved memory. Best@k selects memory from the Top-K most suitable memory
structures. Equal retrieves an equal number of items from each of the four available memory structures. The best

scores are bolded.

complementary benefits. To this end, we adopt the
Bradley-Terry (BT) loss (Bradley and Terry, 1952),
a principled probabilistic framework for modeling
pairwise preferences. For a given pair (i, j), the
BT model defines the probability that memory type
1 is preferred over j as:

exp(s;)
exp(s;) + exp(s;)

P(i - j) = = o(si — s5),

(7
where o (-) is the sigmoid function. Given a training
instance with a preferred type g and all other types
j # g, we define the loss as the average negative
log-likelihood across all pairwise comparisons:

1

Lgr(s, g) = _1 Z —log (o(sg — 55)), (8)
J#g
where K = 4 is the total number of structure

types. This loss navigates the model to assign
higher scores to the preferred structure relative to
the others while encouraging a relative ranking
rather than an absolute classification. Section 7.2
conduct ablation study on different loss functions.

5 Experimental Results

5.1 Experimental Setting

Dataset Following prior work (Gutiérrez et al.,
2024), we evaluate our method on three challenging
long-context Multi-hop question answering (QA)
datasets: HotPotQA (Yang et al., 2018), 2WikiMul-
tihopQA (Ho et al., 2020), and MuSiQue (Trivedi

et al., 2022). To reduce cost during memory con-
struction, we adopt the evaluation set used in Zeng
etal. (2024). Additional details about these datasets
are provided in Appendix D.

Evaluation To evaluate QA performance, we fol-
low previous work (Li et al., 2024b) and use stan-
dard metrics such as Exact Match (EM) score and
F1 score for all the datasets.

Baseline We compare our method against several
hybrid and adaptive memory selection strategies.
Random follows Zeng et al. (2024) by retrieving a
randomly selected mix of memory items. Best@k
selects items from the top k£ most suitable memory
structures. For instance, Best@1 (an alternative to
StructRAG (Li et al., 2024d)) uses only the most
preferred structure, while Best@2 and Best@3 use
the top two or three preferred structures, respec-
tively. Equal retrieves an equal number of items
from each of the four available memory structures.

Implementation Details We build our frame-
work upon the Qwen2 (Bai et al., 2023) series (Ap-
pendix C), using default hyperparameter configura-
tions. Specifically, Qwen2.5-7B-Instruct serves as
the backbone for both multi-objective reward mod-
eling (see Section 4 for details) and LLM-agent in-
ference. To validate the robustness of our approach,
we further conduct experiments based on Llama-
3.1-8B-Instruct, under identical datasets and hy-
perparameter settings (Results are provided in Ta-
ble 7). We use Qwen2.5-72B-Instruct for synthetic



Memory Structure HotPotQA 2WikiQA MuSiQue Average
EM F1 EM F1 EM F1 EM F1
TAG 58.00 75.73 40.50 51.22 22.50 37.92 40.33 54.96
W/o Chunks 51.00 68.53 38.50 49.16 1950 3494 36.33 50.88
W/o Triples 56.50 7248 37.00 49.51 2250 37.70 38.67 53.23
W/o Atomic Facts 55.00 7299 40.50 51.63 20.00 33.76 38.50 52.79
W/o Summaries 51.50 71.01 36.50 48.54 15.00 31.73 3433 50.43

Table 2: Performance of removing each memory structure compared to keeping full memory.

data generation and serve the model via API us-
ing v11m'. We present the details of reward model
training in Appendix E.

5.2 Main Results

We present the core performance of TAG in the
standard single-step retrieval setting (Rubin et al.,
2022). As summarized in Table 1, TAG consis-
tently surpasses both uni-structured and hybrid-
memory baselines across all evaluated benchmarks.
It delivers the strongest overall results on ev-
ery dataset, with substantial gains over the best-
performing single-memory configuration. In par-
ticular, on HotPotQA, TAG attains an F1 score of
75.73, exceeding the strongest single-memory base-
line (Chunks, 69.12) by 6.61 points. Likewise,
it achieves F1 scores of 51.22 on 2WikiQA and
37.92 on MuSiQue, establishing new state-of-the-
art performance on both benchmarks. These results
highlight the effectiveness of query-adaptive, multi-
granular memory composition in retrieving task-
relevant evidence and strengthening long-context
multi-hop reasoning for LLM-based agents.

5.3 Ablation Study

To better understand the contribution of each mem-
ory structure in our framework, we conduct an abla-
tion study by systematically removing one structure
at a time. The results are shown in Table 2. We
observe that the TAG consistently outperforms all
ablated variants across datasets, highlighting the
complementary strengths of the four memory struc-
tures. Removing chunks and summaries leads to
large performance drops, with an average F1 score
decrease of 4.53 for summaries. This suggests
that chunks and summaries, which offer high-level
context and thematic overviews that aid global rea-
soning, are especially critical for grounding fine-
grained reasoning in contextually rich passages.

"https://pypi.org/project/vllm/

Removing triples and atomic facts causes a mod-
erate drop in performance. Triples encode explicit
entity-relation-entity structures that benefit factoid-
style reasoning but may lack flexibility in capturing
implicit connections.

Components Parameters Additional
Base Model 7.62B 100%
LoRA Block 2.52M 0.033%
Regression Head 0.014M 0.00019%

Table 3: Comparison of parameter size for router com-
ponents relative to the base model.

Dataset Predict Weights (s) Generation (s)
2WikiQA 0.0451 0.4719
HotpotQA 0.0466 0.4582
MuSiQue 0.0468 0.4857

Table 4: Average per-call latency for weights prediction
and answer generation across three datasets.

6 Latency Analysis

We assess the efficiency of the proposed reward-
guided memory router by analyzing its parameter
overhead and inference latency. As described in
Section 4.2, the router comprises a LoRA-adapted
LLM and a lightweight regression head that pre-
dicts optimal memory composition for each query.
Table 3 reports the parameter size of these compo-
nents. The LoRA module introduces only 0.033%
additional parameters relative to the base LLM,
while the regression head contributes a negligible
0.00019%. This minimal overhead highlights the
scalability and practicality of our router for inte-
gration into large-scale agent systems. To evaluate
runtime efficiency, we measure the average latency
introduced by the router on three multi-hop QA
benchmarks. As shown in Table 4, the memory
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Figure 3: F1 score of different routing Strategies.

routing step requires only 0.0451 to 0.0468 sec-
onds per query, which is marginal compared to the
total answer generation time (approximately 0.46
to 0.49 seconds). These results demonstrate that
our reward-guided routing mechanism significantly
improves the flexibility and task adaptiveness of
memory retrieval, while incurring minimal compu-
tational cost, making it a highly viable solution for
real-world deployment.

7 Analysis of Navigating Strategy

In this section, we aim to answer two questions:
1) How does the quality of the router impact the
performance? 2) Is it necessary to employ a multi-
objective reward model for memory routing?

7.1 Routing Strategy

To assess the impact of the reward model’s qual-
ity on TAG, we conducted a comparative analy-
sis using routers of varying routing capabilities.
We evaluated four distinct router configurations:
(1) Strong Router: trained on the complete syn-
thetic dataset (2400 examples), representing our
best-performing reward model. (2) Weak Router:
trained on a randomly selected 50% subset of the
training data (1200 examples), simulating a less
informed model. (3) Average Router: a heuristic
baseline that assigns equal importance (w; = 0.25)
to all four memory structures. (4) Bad Router:
a baseline that assigns random weights to mem-
ory structures. (5) Fix-G (global): a single global
weight vector w = [we, wr, w4, wg] applied to all
queries, where each wj is proportional to the single-
structure F1 score of the corresponding memory
type reported in Table 1, reflecting their relative
importance. (6) Fix-P (per-dataset): similar to (5),
but a separate w is computed for each dataset (Hot-
potQA, 2Wiki, MuSiQue) using their respective
single-structure F1 scores from Table 1.

Figure 3 demonstrates that the effectiveness of
TAG heavily depends on the router’s quality. The
Strong Router achieves the highest F1 across all
datasets, while the Weak Router can underperform
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Figure 4: F1 score of different training loss functions.

the Average Router, indicating that insufficiently
trained reward models may misallocate memory.
Notably, both fixed-weight schemes (Fix-G and Fix-
P) lag behind the query-adaptive Strong Router,
underscoring the necessity of per-query routing
over corpus-level weighting. Complete results are
reported in Table 10.

7.2 Loss Function Design

As discussed in Section 4.3, our objective is to
model the relative contributions of multiple mem-
ory structures to a given question, rather than se-
lecting a single best structure. To this end, the
model outputs a four-dimensional score vector,
where each dimension reflects the predicted utility
of a corresponding memory structure. We com-
pare our proposed multi-object Bradley-Terry (BT)
loss against three alternative loss functions: Cross-
Entropy (CE)(Shannon, 1948), Mean Squared
Error (MSE)(Bishop, 2006), and Binary Cross-
Entropy (BCE)(Cox, 1958) (see Appendix E for
implementation details). Each loss function in-
troduces distinct inductive biases. CE treats the
task as multi-class classification, assuming a single
optimal structure. MSE models the task as regres-
sion, minimizing the squared L2 distance between
predicted scores and the preference labels. BCE
allows independent estimation of each structure’s
relevance, making it more flexible for multi-label
scenarios. In contrast, our multi-object BT loss is
explicitly designed to encourage pairwise ranking
consistency. It encourages the model to score the
preferred structure higher than the others, aligning
directly with our goal of capturing relative use-
fulness. As illustrated in Figure 4, the BT loss
achieves the highest average F1 score among all
the loss functions, indicating that its ranking-based
formulation is more effective for modeling nuanced
structural preferences. Full results are reported in
Table 9.



8 Case Study

To better understand the importance of hybrid mem-
ory composition, we analyze a failure case involv-
ing multi-hop reasoning from HotPotQA dataset.
The query asks: "Who costarred in the 1935 Amer-
ican drama film Les Misérables with the husband
of Elsa Lanchester?".

Triples:
e Charles Laughton; nationality; English

Atomic Facts:

e Charles Laughton was trained at the Royal
Academy of Dramatic Art in London.

e Fredric March and Charles Laughton star
in Les Misérables.—Factual Details

Chunks:

e [es Misérables is a 1935 American drama
film starring Fredric March and Charles
Laughton...—Global Semantics

Answer: Fredric March v/

\

Single chunk structure memory

Chunks:

e L es Misérables is a 1935 American drama
film starring Fredric March and Charles
Laughton... —+Global Semantics

e Charles Laughton...lived and worked with
Elsa Lanchester... —+Noise Content

Answer: Charles Laughton X

\. J

When relying on a single memory type such
as document chunks, the agent retrieves one pas-
sage chunk including statement that Les Misérables
stars Charles Laughton and Fredric March, and
another chunk describe biographical information
including that Charles Laughton was the husband
of Elsa Lanchester. However, without structured
representations to guide relevance, the agent selects
Charles Laughton as the answer—incorrectly iden-
tifying Lanchester’s husband instead of his co-star.
This mistake highlights the “semantic drift” prob-
lem (Spataru et al., 2024) typical of long chunks,
where textual noise or proximity bias misleads the
model. Under Hybrid memory configuration, the
agent correctly identifies the answer as Fredric
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Figure 5: F1 score of different routing strategies under
varying Top-K.

March. This memory context explicitly links Elsa
Lanchester to her husband, Charles Laughton, and
co-lists both Laughton and March in the cast of
Les Misérables. The model successfully performs
two-hop reasoning: first inferring that Charles
Laughton is Lanchester’s husband, and then identi-
fying Fredric March as Laughton’s co-star.

9 Hyperparameter Sensitivity

To further validate the robustness of TAG frame-
work, we analyze its sensitivity to the hyperparam-
eter Top-K, which controls the number of retrieved
memory units during inference. We evaluate per-
formance across three values of K € 25,50, 75
using the HotPotQA dataset. As shown in Fig-
ure 5, TAG achieves optimal performance at K =
50, with an F1 score of 75.73, outperforming other
configurations. Overall, these results underscore
the importance of balancing retrieval breadth and
precision. While larger K values provide more op-
portunities to gather relevant facts, they may also
introduce noise. Our adaptive routing mechanism
helps mitigate this trade-off by learning to allocate
retrieval resources more effectively across differ-
ent memory types. The full results is provided in
Table 8.

10 Conclusion

This work introduces TAG, a novel framework de-
signed to overcome the limitations of uni-structural
memory in large language model agents for com-
plex, long-context reasoning. By integrating di-
verse memory structures and employing a reward-
guided retrieval mechanism trained with a multi-
object Bradley-Terry loss, TAG adaptively com-
poses an optimal memory set tailored to each query.
Our extensive experiments underscore the critical
role of adaptive, granular memory composition in
enhancing the long-context reasoning capabilities
of LLM agents.



Limitations

TAG has several limitations. First, it relies on auto-
matically generated structured memories produced
by a large teacher model. While this follows com-
mon offline index-enrichment practice in modern
RAG pipelines, any generation errors, omissions,
or inconsistencies can propagate into retrieval and
reasoning, and TAG does not include an explicit
mechanism to validate, denoise, or correct individ-
ual memory units. Second, the navigator is trained
with weak synthetic preference supervision rather
than human annotations or end-task rewards. Al-
though our router-quality analyses indicate perfor-
mance degrades predictably as supervision quality
weakens, we do not fully characterize the synthetic
dataset’s properties or the teacher’s selection ra-
tionale, and future work should study robustness
to label noise more directly or explore alternative
supervision, such as partial human feedback or end-
to-end RL. Third, our experiments are confined to
open-source models, which might not be represen-
tative of the broader landscape of LLMs, particu-
larly those that are closed-source and potentially
optimized for proprietary datasets.
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A Extended Related Work

A.1 LLM Agents and Memory

LLM-based agents extend language models with
planning, tool use, and memory components, en-
abling long-horizon interaction and learning from
experience (Xi et al., 2023; Wang et al., 2023a;
Yao et al., 2022; Shinn et al., 2023). Memory plays
a critical role in grounding reasoning and main-
taining state across extended contexts (Zhang et al.,
2024; Lee et al., 2024; Diao et al., 2025¢; Yan et al.,
2026). A prevalent design stores past observations
as chunked text indexed in vector databases (Lewis
et al., 2020b; Packer et al., 2023). Despite its
scalability, chunk-level memory is often noisy and
susceptible to attention failures in long inputs, in-
cluding the “lost-in-the-middle” phenomenon (Liu
et al., 2023). These limitations motivate structured
and multi-view memory representations that more
explicitly expose salient content and relationships,
especially for long and heterogeneous documents.

A.2 Long-Context Multi-Hop QA with RAG

Retrieval-augmented generation (RAG) (Lewis
et al., 2020a; Hu and Lu, 2024; Li et al., 2025b;
Zhang et al., 2025e) is the dominant paradigm for
grounding LLMs in external corpora. However,
multi-hop reasoning over long contexts remains
challenging due to dispersed evidence and abun-
dant distractors (Zhang et al., 2025c¢). One line of
work interleaves retrieval with intermediate reason-
ing, decomposing queries or issuing sub-queries
to iteratively gather missing evidence (Press et al.,
2023; Trivedi et al., 2023). While effective, such
pipelines often increase latency and are sensitive to
early-stage retrieval errors.

Other approaches improve long-context retrieval
by modifying retrieval units, indexing schemes, or
access strategies. Multi-view and content-aware
indexing encodes complementary global and local
document signals to improve robustness on long
documents (Dong et al., 2024). Hierarchical ab-
stractions enable coarse-to-fine retrieval (Lewis
et al., 2020a), while dual-view methods combine
document-level representations with localized pas-
sages (Zhao et al., 2024). Recent benchmarks fur-
ther show that retrieval effectiveness varies sub-
stantially with document length, modality, and ev-
idence dispersion, revealing persistent challenges
in multi-hop and multimodal settings (Dong et al.,
2025a,b).

Recent analyses highlight the importance of

memory granularity—document-, passage-, or
proposition-level units—with no single granular-
ity performing optimally across tasks (Chen et al.,
2024). This motivates adaptive mechanisms that
dynamically select or combine granularities condi-
tioned on the query. Related work explores adap-
tive control in RAG to modulate retrieval and gen-
eration behaviors (Huanshuo et al., 2025), but typi-
cally assumes a fixed underlying memory represen-
tation.

Graph-based methods offer an alternative by ex-
plicitly modeling cross-passage associations (Yang
et al., 2022; Zhang et al., 2025d; Cheng et al.,
2024b). Automatically induced or schemaless
graphs support multi-hop retrieval via propagation,
complementing dense retrieval when lexical or se-
mantic signals are weak (Gutiérrez et al., 2024).
In contrast to approaches that primarily modify
retrievers or indices, our work focuses on guery-
adaptive composition across heterogeneous mem-
ory representations.

A.3 Structured Memory Representations

To improve information density and retrieval con-
trollability, recent work extracts semi-structured
and structured representations from text. Sum-
maries capture global semantics and support high-
level retrieval and planning (Xu et al., 2023; Lee
et al., 2024). Atomic facts or proposition-like
units provide fine-grained, verifiable information
that improves precision and reduces irrelevant con-
text (Min et al., 2023; Li et al., 2024b). Document-
level information extraction further emphasizes pre-
serving long-range context when constructing struc-
tured knowledge (Dong et al., 2021).

Triples and graph representations explicitly en-
code entity relations, facilitating relational reason-
ing and multi-hop inference (Anokhin et al., 2024;
Baek et al., 2023; Sun et al., 2024). In multimodal
settings, unified document parsing systems extract
structured representations across text, layout, and
visual modalities to support downstream reason-
ing (Dong et al., 2025c). These representations
involve trade-offs between contextual richness and
precision: highly structured units may lose dis-
course context, while less structured units can in-
troduce noise.

Hybrid memory systems combine multiple
representations to leverage complementary
strengths (Zeng et al., 2024). However, existing
approaches often rely on fixed or heuristic mixture
policies rather than query-adaptive selection. Our



method addresses this limitation by learning a
lightweight router that produces query-conditioned
allocations over memory types, enabling dynamic
routing across granularities.

B Loss Function

We consider the following three alternatives to the
Bradley-Terry (BT) loss:

B.1 Cross-Entropy Loss (CE)

Cross-Entropy Loss (CE): This loss treats the
task as a standard multi-class classification prob-
lem. The model outputs a score vector s =
[s1, 82, 53,54] € R?*, and the loss encourages the
score corresponding to the gold method g to be
highest. The softmax function is applied to the
scores to produce a probability distribution:

exp(s;)

4 b
Zj:1 exp(s;)
and the loss is defined as:

exp(sq) )
= |-

> j=1 exp(s;)

(10)
While effective for hard classification, this loss en-
forces mutual exclusivity among the methods and
discourages overlapping or partial contributions.

€)

P =

Lcg = —log(py) = —log (

B.2 Mean Squared Error (MSE)

Mean Squared Error (MSE) Loss: This
regression-based loss minimizes the squared dis-
tance between the predicted score vector s and
the one-hot ground-truth label vector y =
[Y1, Y2, y3,ya), where y, = 1and y; = O for j # g.
The loss is defined as:
1o )
LMsE = 1 Z(Si —yi)".

=1

an

This formulation supports soft contributions but
lacks a mechanism to enforce comparative ranking
or preference ordering.

B.3 Binary Cross-Entropy(BCE)

Binary Cross-Entropy with Logits Loss (BCE):
This loss models each score independently using
binary classification. The raw scores s are passed
through the sigmoid function o(s;) = 1/(1+e~%),
and the loss compares each prediction to its corre-
sponding binary label y; € {0, 1}:

L lyilog a(s:) + (1 — y;) log(1 — o(sy))]
(12)

1
Lpcg = —3

Unlike CE, BCE does not assume exclusivity and
can assign high confidence to multiple methods.
It also provides a natural extension path to soft
supervision with fractional labels.

C Open-sourced models

We follow previous works (Li et al., 2024d) and
use the Qwen?2 series model in our work, as shown
in Table 5.

Section textbfModel Name
Retriever gte-Qwen2-1.5B-instruct
Agent Backbone Qwen2.5-7B-Instruct
Reward Model Qwen2.5-7B-Instruct
Data Synthesis Qwen2.5-72B-Instruct

Table 5: Open-sourced models used this work.

D Datasets

We evaluate our method on three challenging En-
glish multi-hop QA datasets, adapted for long-
context reasoning by utilizing full Wikipedia pas-
sages. HotpotQA features 2-hop questions au-
thored by native speakers, derived from two related
Wikipedia paragraphs. 2WikiMultihopQA con-
sists of questions requiring up to 5 reasoning hops,
which are synthesized using manually designed
templates to ensure true multi-hop reasoning and
prevent shortcut solutions. Questions in MuSiQue
are composed from simpler questions to involve up
to 4 reasoning hops. They are subsequently para-
phrased by human annotators to enhance linguistic
naturalness and guard against superficial shortcuts.
For our long-context setting, we used the complete
Wikipedia passages from which the original sup-
porting and distracting paragraphs were sourced.
The statistical information of datasets is provided
in Table 6.

Dataset Avg. # Tokens # Samples
HotpotQA 1,362 200
2WikiMultihopQA 985 200
MuSiQue 2,558 200

Table 6: The statistics and example of datasets.

E Reward Model training

We construct a dataset comprising 2,400 exam-
ples. We adopt a standard LoRA setup with rank
8 on the g_proj and v_proj layers of the decoder-
based backbone LLM. We training the model in 1



Memory Structure HotPotQA 2WikiQA MuSiQue Average
EM F1 EM F1 EM F1 EM F1

Summary 52.00 69.07 34.00 46.24 1650 32.85 34.17 49.39
Chunks 52.00 6848 33.50 47.90 17.00 32.30 34.17 49.56
Triples 33.50 4575 2450 3698 7.50 17.35 21.83 33.36
Atomic Facts 38.50 51.12 29.50 43.10 10.00 18.04 26.00 37.42
Equal 52.00 7024 34.00 47.19 11.00 26.17 3233 47.87
TAG 53.50 71.01 35.00 47.27 17.50 3242 3533 50.23

Table 7: Results of TAG and individual memory structures on Llama-3.1-8B-Instruct across three multi-hop QA

benchmarks.

Memory Top-k=25 Top-k=50  Top-k=75 Router HotPotQA 2WikiQA MuSiQue
EM ¥ _EM F1 EM ¥ Random  71.54 46.21 30.22

Bow@l 3050 5593 4700 6l07 a0 sey  Eauwl 7361 5101 32.66

(& . . B B . .

Best@2  37.50 55.17 37.50 50.05 4550 6043 Weak 72.35 47.38 32.06

Best@3 3800 5593 53.00 7028 51.50 68.88 Fix-G 73.92 50.58 33.68

Equal 4000 5548 5800 73.61 5450 72.63 Fix-P 74.22 51.36 35.26

TAG 44.00 5834 58.00 7573 5550 73.71 Strong 75.73 51.22 37.92

Table 8: Hybrid memory performance under different
Top-k retrieval settings.

Loss Function HotPotQA 2WikiQA MuSiQue

CE 72.99 47.29 32.04
MSE 71.83 48.83 30.84
BCE 61.45 43.91 30.16
BT 75.73 51.22 37.92

Table 9: F1 scores of different training loss functions
across datasets.

NVIDIA RTX A6000 GPU using a learning rate of
2 x 107°, 3 training epochs, and a batch size of 8.

F Heterogeneous Memory Granularity

Long-context multi-hop reasoning inherently in-
volves information at different levels of granular-
ity. Depending on the query, relevant evidence
may take the form of fine-grained facts, explicit
relations, temporal segments, or high-level abstrac-
tions, making a single fixed representation insuf-
ficient. This heterogeneity has been repeatedly
observed across prior work. Temporal ground-
ing, multimodal fusion, and consistency modeling
rely on intermediate representations at different se-
mantic and temporal scales (Li et al., 2024c; Wei
etal.,2025a; Wang et al., 2025a), while uncertainty-
aware and multi-view frameworks show that sepa-
rating heterogeneous evidence is preferable to col-

Table 10: F1 scores of different router designs across
datasets.

lapsing it into a monolithic form (Xie et al., 2024,
2025b; Diao et al., 2025b). Routing and modular-
ization mechanisms further exploit such diversity
by selecting different computation paths or experts
conditioned on the input (Wei et al., 2025b; Chen
et al., 2025; Diao et al., 2025a). At the representa-
tion level, modern multimodal encoders naturally
produce intermediate features with varying abstrac-
tion and structure (Li et al., 2025¢; Liu et al., 2025,
2024; Huang et al., 2025e; Zhou et al., 2025a),
and task constraints such as recoverability motivate
distinct intermediate forms (Huang et al., 2025f).
Across different system designs, a recurring theme
is that intermediate information is processed in a
non-uniform manner, with certain signals being pri-
oritized, deferred, or selectively engaged depend-
ing on their utility (Huang et al., 2025d; Cheng
et al., 2024a; Huang et al., 2025¢,b; Li et al., 2025a;
Huang et al., 2025a). Such observations are consis-
tent with broader analyses showing that uniformly
processing all intermediate signals can lead to inef-
ficient or brittle reasoning (Xie et al., 2025a; Diao
et al., 2026). Motivated by these observations, our
work treats memory granularity as a first-class de-
sign choice and learns a query-conditioned strategy
to compose heterogeneous memories for multi-hop
reasoning.



You are now an intelligent assistant tasked with meticulously extracting both key elements and triples from a long text.

1. Key Elements: The essential nouns (e.g., characters, times, events, places, numbers), verbs (e.g., actions), and
adjectives (e.g., states, feelings) that are pivotal to the text’s narrative.

2. Triples: Structured triplets in the format of "subject, relation, object". Each triple should represent a clear and
concise fact, relation, or interaction within the observation. You should aim for simplicity and clarity, ensuring that
each triplet has no more than 7 words.

Requirements:

s

1. Ensure that all identified key elements are reflected within the corresponding atomic facts.

2. You should extract key elements and atomic facts comprehensively, especially those that are important and
potentially query-worthy and do not leave out details.

3. Whenever applicable, replace pronouns with their specific noun counterparts (e.g., change I, He, She to actual
names).

4. Ensure that the key elements and triples you extract are presented in the same language as the original text (e.g.,
English or Chinese).

5. Avoid Redundant Triples: Do not include irrelevant information like the current location of the agent (e.g., "you, are
in, location") or placeholder entities such as "none."

6. Your answer format for each line should be: [Serial Number], [Atomic Facts], [List of Key Elements, separated with
1

i

Example:

HH#HE

# User: One day, a father and his little son ......

#

# Assistant:

1. Father, went to, home | father | went to | home

2. Son, went to, home | son | went to | home

3. Father, accompanied by, son | father | accompanied by | son
4. ..

HHHH

#

Please strictly follow the above format. Let’s begin.

Context:
{context}

(a) Prompt for generating knowledge triples.

You are a helpful assistant responsible for generating a comprehensive summary of the data provided below.

Given one or two atomic facts, and its original descriptions, all related to the atomic facts.

Please concatenate all of these into a single, comprehensive description. Make sure to include information collected
from all the descriptions.

If the provided descriptions are contradictory, please resolve the contradictions and provide a single, coherent
summary.

Make sure it is written in third person, and include the names so we have the full context.

lidiaigiaiciaid
-Data-
Atomic facts:
{elements}

Original Description List:
{description_list}
I

Output:

(b) Prompt for generating summaries.

Figure 6: Prompts for generating knowledge triples and summaries.




N
You are now an intelligent assistant tasked with meticulously extracting both key elements and atomic facts from a
conversation history..

1. Key Elements: The essential nouns (e.g., characters, times, events, places, numbers), verbs (e.g., actions), and
adjectives (e.g., states, feelings) that are pivotal to the text's narrative.

2. Atomic Facts: The smallest, indivisible facts, presented as concise sentences. These include propositions, theories,
existences, concepts, and implicit elements like logic, causality, event sequences, interpersonal relationships,
timelines, etc.

Requirements: ###HH#

1. Ensure that all the atomic facts contain full and complete information, reflecting the entire context of the sentence
without omitting any key details.

2. Ensure that all identified key elements are reflected within the corresponding atomic facts.

3. You should extract key elements and atomic facts comprehensively, especially those that are important and
potentially query-worthy and do not leave out details.

4. Whenever applicable, replace pronouns with their specific noun counterparts (e.g., change I, He, She to actual
names).

5. Ensure that the key elements and atomic facts you extract are presented in the same language as the original text
(e.g., English or Chinese).

6. You should output a total of key elements and atomic facts that do not exceed 1024 tokens.

7. Your answer format for each line should be: [Serial Number], [Atomic Facts], [List of Key Elements, separated
with '[']

lisiaaiaia

Example:

it

Conversation:

1. Caroline said, "Woohoo Melanie! I passed the adoption agency interviews last Friday! I'm so excited and thankful.
This is a big move towards my goal of having a family."

2. Melanie said, "Congrats, Caroline! Adoption sounds awesome. These figurines I bought yesterday remind me of
family love. Tell me, what's your vision for the future?"

and shared a photo of a couple of wooden dolls sitting on top of a table.

Atomic Facts and Key Elements:

1. Caroline passed the adoption agency interviews last Friday. | Caroline | adoption agency interviews | last Friday

2. Caroline is excited and thankful for passing the adoption agency interviews. | Caroline | excited | thankful | adoption
agency interviews

3. Passing the adoption agency interviews is a big move towards Caroline's goal of having a family. | Caroline |
adoption agency interviews | goal | having a family

4. Melanie congratulated Caroline on passing the adoption agency interviews. | Melanie | Caroline | adoption agency
interviews | Congratulations

5. Melanie thinks that adoption sounds awesome. | Melanie | Adoption | awesome

6. Melanie bought figurines yesterday. | Melanie | figurines | yesterday

7. The figurines Melanie bought remind her of family love. | Melanie | figurines | family love

8. Melanie asked Caroline about her vision for the future. | Melanie | Caroline | vision for the future

9. Melanie shared a photo of wooden dolls sitting on a table. | Melanie | wooden dolls | table | photo

# ittt

#

Please strictly follow the above format. Let's begin.

Conversation:
{conversation}

Atomic Facts and Key Elements:

Figure 7: Prompt for generating atomic facts.
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